Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1990 Jan;85(1):200–207. doi: 10.1172/JCI114413

Identification of two related markers for common acute lymphoblastic leukemia as heat shock proteins.

J R Strahler 1, R Kuick 1, C Eckerskorn 1, F Lottspeich 1, B C Richardson 1, D A Fox 1, L M Stoolman 1, C A Hanson 1, D Nichols 1, H J Tueche 1, et al.
PMCID: PMC296406  PMID: 2295696

Abstract

By direct analysis of the polypeptide constituents of leukemic cells, we have previously detected several polypeptides that are restricted in their expression to acute lymphoblastic leukemia (ALL). In this study, we provide evidence that two polypeptides designated L2 and L4 are structurally related and represent novel markers for common ALL. Partial amino acid sequence analysis did not uncover differences between L2 and L4. The sequences obtained correspond to a previously cloned human gene designated hsp 27 that is expressed, following heat shock treatment, in a variety of cells. 32Pi incorporation studies indicate that L4 is an unphosphorylated form and L2 is a phosphorylated form of hsp27. The two forms were inducible by heat shock in leukemic and nonleukemic lymphoid cells. Thus, in acute leukemia, the common ALL subtype is uniquely characterized by the constitutive expression of a polypeptide that represents a major cellular phosphoprotein.

Full text

PDF
200

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arrigo A. P., Suhan J. P., Welch W. J. Dynamic changes in the structure and intracellular locale of the mammalian low-molecular-weight heat shock protein. Mol Cell Biol. 1988 Dec;8(12):5059–5071. doi: 10.1128/mcb.8.12.5059. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bensaude O., Morange M. Spontaneous high expression of heat-shock proteins in mouse embryonal carcinoma cells and ectoderm from day 8 mouse embryo. EMBO J. 1983;2(2):173–177. doi: 10.1002/j.1460-2075.1983.tb01401.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bienz M. Developmental control of the heat shock response in Xenopus. Proc Natl Acad Sci U S A. 1984 May;81(10):3138–3142. doi: 10.1073/pnas.81.10.3138. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bloemendal H., Berns T., Zweers A., Hoenders H., Benedetti E. L. The state of aggregation of -crystallin detected after large-scale preparation by zonal centrifugation. Eur J Biochem. 1972 Jan 21;24(3):401–406. doi: 10.1111/j.1432-1033.1972.tb19699.x. [DOI] [PubMed] [Google Scholar]
  5. Bollum F. J. Terminal deoxynucleotidyl transferase as a hematopoietic cell marker. Blood. 1979 Dec;54(6):1203–1215. [PubMed] [Google Scholar]
  6. Crist W. M., Grossi C. E., Pullen D. J., Cooper M. D. Immunologic markers in childhood acute lymphocytic leukemia. Semin Oncol. 1985 Jun;12(2):105–121. [PubMed] [Google Scholar]
  7. Eckerskorn C., Mewes W., Goretzki H., Lottspeich F. A new siliconized-glass fiber as support for protein-chemical analysis of electroblotted proteins. Eur J Biochem. 1988 Oct 1;176(3):509–519. doi: 10.1111/j.1432-1033.1988.tb14308.x. [DOI] [PubMed] [Google Scholar]
  8. George D. G., Barker W. C., Hunt L. T. The protein identification resource (PIR). Nucleic Acids Res. 1986 Jan 10;14(1):11–15. doi: 10.1093/nar/14.1.11. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Greaves M. F. Differentiation-linked leukemogenesis in lymphocytes. Science. 1986 Nov 7;234(4777):697–704. doi: 10.1126/science.3535067. [DOI] [PubMed] [Google Scholar]
  10. Green R. J., Findley H. W., Jr, Chen A. T., Ragab A. H. Characterization of a new chromosomal marker for acute lymphoblastic leukemia from a long-term cell line. Cancer Genet Cytogenet. 1982 Nov;7(3):257–269. doi: 10.1016/0165-4608(82)90073-5. [DOI] [PubMed] [Google Scholar]
  11. Hahnel A. C., Gifford D. J., Heikkila J. J., Schultz G. A. Expression of the major heat shock protein (hsp 70) family during early mouse embryo development. Teratog Carcinog Mutagen. 1986;6(6):493–510. doi: 10.1002/tcm.1770060603. [DOI] [PubMed] [Google Scholar]
  12. Hanash S. M., Baier L. J., McCurry L., Schwartz S. A. Lineage-related polypeptide markers in acute lymphoblastic leukemia detected by two-dimensional gel electrophoresis. Proc Natl Acad Sci U S A. 1986 Feb;83(3):807–811. doi: 10.1073/pnas.83.3.807. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hanash S. M., Baier L. J., Welch D., Kuick R., Galteau M. Genetic variants detected among 106 lymphocyte polypeptides observed in two-dimensional gels. Am J Hum Genet. 1986 Sep;39(3):317–328. [PMC free article] [PubMed] [Google Scholar]
  14. Hanash S. M., Kuick R., Nichols D., Stoolman L. Quantitative analysis of a new marker for common acute lymphoblastic leukemia detected by two-dimensional electrophoresis. Dis Markers. 1988 Oct-Dec;6(4):209–220. [PubMed] [Google Scholar]
  15. Hanash S. M., Strahler J. R., Kuick R., Chu E. H., Nichols D. Identification of a polypeptide associated with the malignant phenotype in acute leukemia. J Biol Chem. 1988 Sep 15;263(26):12813–12815. [PubMed] [Google Scholar]
  16. Hickey E., Brandon S. E., Potter R., Stein G., Stein J., Weber L. A. Sequence and organization of genes encoding the human 27 kDa heat shock protein. Nucleic Acids Res. 1986 May 27;14(10):4127–4145. doi: 10.1093/nar/14.10.4127. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Higgs J. B., Zeldes W., Kozarsky K., Schteingart M., Kan L., Bohlke P., Krieger K., Davis W., Fox D. A. A novel pathway of human T lymphocyte activation. Identification by a monoclonal antibody generated against a rheumatoid synovial T cell line. J Immunol. 1988 Jun 1;140(11):3758–3765. [PubMed] [Google Scholar]
  18. Howard K. J., Distelhorst C. W. Evidence for intracellular association of the glucocorticoid receptor with the 90-kDa heat shock protein. J Biol Chem. 1988 Mar 5;263(7):3474–3481. [PubMed] [Google Scholar]
  19. Ingolia T. D., Craig E. A. Four small Drosophila heat shock proteins are related to each other and to mammalian alpha-crystallin. Proc Natl Acad Sci U S A. 1982 Apr;79(7):2360–2364. doi: 10.1073/pnas.79.7.2360. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Jondal M., Holm G., Wigzell H. Surface markers on human T and B lymphocytes. I. A large population of lymphocytes forming nonimmune rosettes with sheep red blood cells. J Exp Med. 1972 Aug 1;136(2):207–215. doi: 10.1084/jem.136.2.207. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Kim Y. J., Shuman J., Sette M., Przybyla A. Phosphorylation pattern of a 25 Kdalton stress protein from rat myoblasts. Biochem Biophys Res Commun. 1983 Dec 28;117(3):682–687. doi: 10.1016/0006-291x(83)91651-0. [DOI] [PubMed] [Google Scholar]
  22. Kurtz S., Rossi J., Petko L., Lindquist S. An ancient developmental induction: heat-shock proteins induced in sporulation and oogenesis. Science. 1986 Mar 7;231(4742):1154–1157. doi: 10.1126/science.3511530. [DOI] [PubMed] [Google Scholar]
  23. Merril C. R., Goldman D., Sedman S. A., Ebert M. H. Ultrasensitive stain for proteins in polyacrylamide gels shows regional variation in cerebrospinal fluid proteins. Science. 1981 Mar 27;211(4489):1437–1438. doi: 10.1126/science.6162199. [DOI] [PubMed] [Google Scholar]
  24. Nadler L. M., Korsmeyer S. J., Anderson K. C., Boyd A. W., Slaughenhoupt B., Park E., Jensen J., Coral F., Mayer R. J., Sallan S. E. B cell origin of non-T cell acute lymphoblastic leukemia. A model for discrete stages of neoplastic and normal pre-B cell differentiation. J Clin Invest. 1984 Aug;74(2):332–340. doi: 10.1172/JCI111428. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Regazzi R., Eppenberger U., Fabbro D. The 27,000 daltons stress proteins are phosphorylated by protein kinase C during the tumor promoter-mediated growth inhibition of human mammary carcinoma cells. Biochem Biophys Res Commun. 1988 Apr 15;152(1):62–68. doi: 10.1016/s0006-291x(88)80680-6. [DOI] [PubMed] [Google Scholar]
  26. Sugimoto T., Tatsumi E., Kemshead J. T., Helson L., Green A. A., Minowada J. Determination of cell surface membrane antigens common to both human neuroblastoma and leukemia-lymphoma cell lines by a panel of 38 monoclonal antibodies. J Natl Cancer Inst. 1984 Jul;73(1):51–57. [PubMed] [Google Scholar]
  27. Waldinger D., Eckerskorn C., Lottspeich F., Cleve H. Amino-acid sequence homology of a polymorphic cellular protein from human lymphocytes and the chaperonins from Escherichia coli (groEL) and chloroplasts (Rubisco-binding protein). Biol Chem Hoppe Seyler. 1988 Oct;369(10):1185–1189. doi: 10.1515/bchm3.1988.369.2.1185. [DOI] [PubMed] [Google Scholar]
  28. Welch W. J. Phorbol ester, calcium ionophore, or serum added to quiescent rat embryo fibroblast cells all result in the elevated phosphorylation of two 28,000-dalton mammalian stress proteins. J Biol Chem. 1985 Mar 10;260(5):3058–3062. [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES