Abstract
Bisphosphonates are useful in treatment of disorders with increased osteoclastic activity, but the mechanism by which bisphosphonates act is unknown. We used cultures of chicken osteoclasts to address this issue, and found that 1-hydroxyethylidenediphosphonic acid (EHDP), dichloromethylidenediphosphonic acid (Cl2MDP), or 3-amino-1-hydroxypropylidene-1,1-diphosphonic acid (APD) all cause direct dose-dependent suppression of osteoclastic activity. Effects are mediated by bone-bound drugs, with 50% reduction of bone degradation occurring at 500 nM to 5 microM of the different agents. Osteoclastic bone-binding capacity decreased by 30-40% after 72 h of bisphosphonate treatment, despite maintenance of cell viability. Significant inhibition of bone resorption in each case is seen only after 24-72 h of treatment. Osteoclast activity depends on ATP-dependent proton transport. Using acridine orange as an indicator, we found that EHDP reduces proton accumulation by osteoclasts. However, inside-out plasma membrane vesicles from osteoclasts transport H+ normally in response to ATP in high concentrations of EHDP, Cl2MDP, or APD. This suggests that the bisphosphonates act as metabolic inhibitors. Bisphosphonates reduce osteoclastic protein synthesis, supporting this hypothesis. Furthermore, [3H]leucine incorporation by the fibroblast, which does not resorb bone, is also diminished by EHDP, Cl2MDP and APD except when co-cultured with bisphosphonate-binding bone particles. Thus, the resorption-antagonizing capacities of EHDP, Cl2MDP and APD reflect metabolic inhibition, with selectivity for the osteoclast resulting from high affinity binding to bone mineral.
Full text
PDF





Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bar-Shavit Z., Teitelbaum S. L., Kahn A. J. Saccharides mediate the attachment of rat macrophages to bone in vitro. J Clin Invest. 1983 Aug;72(2):516–525. doi: 10.1172/JCI110999. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Baron R., Neff L., Louvard D., Courtoy P. J. Cell-mediated extracellular acidification and bone resorption: evidence for a low pH in resorbing lacunae and localization of a 100-kD lysosomal membrane protein at the osteoclast ruffled border. J Cell Biol. 1985 Dec;101(6):2210–2222. doi: 10.1083/jcb.101.6.2210. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Blair H. C., Kahn A. J., Crouch E. C., Jeffrey J. J., Teitelbaum S. L. Isolated osteoclasts resorb the organic and inorganic components of bone. J Cell Biol. 1986 Apr;102(4):1164–1172. doi: 10.1083/jcb.102.4.1164. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Blair H. C., Teitelbaum S. L., Ghiselli R., Gluck S. Osteoclastic bone resorption by a polarized vacuolar proton pump. Science. 1989 Aug 25;245(4920):855–857. doi: 10.1126/science.2528207. [DOI] [PubMed] [Google Scholar]
- Cecchini M. G., Felix R., Fleisch H., Cooper P. H. Effect of bisphosphonates on proliferation and viability of mouse bone marrow-derived macrophages. J Bone Miner Res. 1987 Apr;2(2):135–142. doi: 10.1002/jbmr.5650020209. [DOI] [PubMed] [Google Scholar]
- Fleisch H., Russell R. G., Francis M. D. Diphosphonates inhibit hydroxyapatite dissolution in vitro and bone resorption in tissue culture and in vivo. Science. 1969 Sep 19;165(3899):1262–1264. doi: 10.1126/science.165.3899.1262. [DOI] [PubMed] [Google Scholar]
- Gluck S., Kelly S., Al-Awqati Q. The proton translocating ATPase responsible for urinary acidification. J Biol Chem. 1982 Aug 25;257(16):9230–9233. [PubMed] [Google Scholar]
- Johnston C. C., Jr, Altman R. D., Canfield R. E., Finerman G. A., Taulbee J. D., Ebert M. L. Review of fracture experience during treatment of Paget's disease of bone with etidronate disodium (EHDP). Clin Orthop Relat Res. 1983 Jan-Feb;(172):186–194. [PubMed] [Google Scholar]
- Jung A., Bisaz S., Fleisch H. The binding of pyrophosphate and two diphosphonates by hydroxyapatite crystals. Calcif Tissue Res. 1973 Mar 30;11(4):269–280. doi: 10.1007/BF02547227. [DOI] [PubMed] [Google Scholar]
- Karsten U., Wollenberger A. Improvements in the ethidium bromide method for direct fluorometric estimation of DNA and RNA in cell and tissue homogenates. Anal Biochem. 1977 Feb;77(2):464–470. doi: 10.1016/0003-2697(77)90259-7. [DOI] [PubMed] [Google Scholar]
- Löwik C. W., van der Pluijm G., van der Wee-Pals L. J., van Treslong-De Groot H. B., Bijvoet O. L. Migration and phenotypic transformation of osteoclast precursors into mature osteoclasts: the effect of a bisphosphonate. J Bone Miner Res. 1988 Apr;3(2):185–192. doi: 10.1002/jbmr.5650030210. [DOI] [PubMed] [Google Scholar]
- Marchisio P. C., Cirillo D., Naldini L., Primavera M. V., Teti A., Zambonin-Zallone A. Cell-substratum interaction of cultured avian osteoclasts is mediated by specific adhesion structures. J Cell Biol. 1984 Nov;99(5):1696–1705. doi: 10.1083/jcb.99.5.1696. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Reitsma P. H., Teitelbaum S. L., Bijvoet O. L., Kahn A. J. Differential action of the bisphosphonates (3-amino-1-hydroxypropylidene)-1,1-bisphosphonate (APD) and disodium dichloromethylidene bisphosphonate (Cl2MDP) on rat macrophage-mediated bone resorption in vitro. J Clin Invest. 1982 Nov;70(5):927–933. doi: 10.1172/JCI110704. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Reynolds J. J., Minkin C., Morgan D. B., Spycher D., Fleisch H. The effect of two diphosphonates on the resorption of mouse calvaria in vitro. Calcif Tissue Res. 1972;10(4):302–313. doi: 10.1007/BF02012561. [DOI] [PubMed] [Google Scholar]
- Schenk R., Merz W. A., Mühlbauer R., Russell R. G., Fleisch H. Effect of ethane-1-hydroxy-1,1-diphosphonate (EHDP) and dichloromethylene diphosphonate (Cl 2 MDP) on the calcification and resorption of cartilage and bone in the tibial epiphysis and metaphysis of rats. Calcif Tissue Res. 1973 Mar 12;11(3):196–214. doi: 10.1007/BF02547219. [DOI] [PubMed] [Google Scholar]
- Teitelbaum S. L., Stewart C. C., Kahn A. J. Rodent peritoneal macrophages as bone resorbing cells. Calcif Tissue Int. 1979 Jul 3;27(3):255–261. doi: 10.1007/BF02441194. [DOI] [PubMed] [Google Scholar]
- Teti A., Blair H. C., Teitelbaum S. L., Kahn A. J., Koziol C., Konsek J., Zambonin-Zallone A., Schlesinger P. H. Cytoplasmic pH regulation and chloride/bicarbonate exchange in avian osteoclasts. J Clin Invest. 1989 Jan;83(1):227–233. doi: 10.1172/JCI113863. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zambonin Zallone A., Teti A., Primavera M. V. Isolated osteoclasts in primary culture: first observations on structure and survival in culture media. Anat Embryol (Berl) 1982 Dec;165(3):405–413. doi: 10.1007/BF00305576. [DOI] [PubMed] [Google Scholar]
- de Duve C., de Barsy T., Poole B., Trouet A., Tulkens P., Van Hoof F. Commentary. Lysosomotropic agents. Biochem Pharmacol. 1974 Sep 15;23(18):2495–2531. doi: 10.1016/0006-2952(74)90174-9. [DOI] [PubMed] [Google Scholar]