Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1990 Feb;85(2):541–549. doi: 10.1172/JCI114470

Angiotensin converting enzyme inhibition ameliorates glomerular filtration of macromolecules and water and lessens glomerular injury in the rat.

A Remuzzi 1, S Puntorieri 1, C Battaglia 1, T Bertani 1, G Remuzzi 1
PMCID: PMC296456  PMID: 1688888

Abstract

The effect of enalapril on glomerular hemodynamics and permselectivity and on subsequent sclerosis was studied in male MWF/Ztm rats which spontaneously develop proteinuria and glomerular structural damage. Untreated group 1 and enalapril-treated group 2 (50 mg/liter, in the drinking water) underwent micropuncture studies after 2 mo of observation. After the same period of treatment, group 3 (untreated) and group 4 (enalapril treated) were used for determination of whole-kidney function and neutral dextran clearances. Group 5 (untreated) and group 6 (enalapril treated) were followed for an additional 4 mo and used for kidney function and morphological studies. Enalapril significantly lowered systolic blood pressure, which was elevated in untreated groups, and significantly reduced proteinuria (295 +/- 64 vs. 128 +/- 24 mg/24 h by the end of the study). Despite the reduced renal perfusion pressure, whole-kidney glomerular filtration rate was higher in enalapril-treated than in untreated rats (0.96 +/- 0.14 vs. 0.81 +/- 0.10 ml/min, P less than 0.05) as was the single nephron glomerular filtration rate (54 +/- 7.1 vs. 46 +/- 4.0 nl/min, P less than 0.05). The single glomerular afferent plasma flow was comparable in both groups. Enalapril reduced mean glomerular capillary hydraulic pressure from the normal value of 51 +/- 1 mmHg (untreated rats) to a value lower than normal (44 +/- 1 mmHg, P less than 0.001). These hemodynamic changes were associated with a significant reduction in afferent (approximately 23%) and efferent (approximately 26%) arteriolar resistance. The mean ultrafiltration coefficient was two times higher in the enalapril (0.126 +/- 0.027 nl/s per mmHg) than in the untreated group (0.061 +/- 0.023 nl/s per mmHg). The clearance of dextran macromolecules relative to that of inulin was significantly reduced for all molecular sizes studied (26-64 A) in enalapril-treated vs. untreated rats. Theoretical analysis of dextran fractional clearances using a heteroporous model of neutral solute transport across the glomerular capillary wall indicated that enalapril affected glomerular membrane size selective properties, reducing uniformly the radius of hypothetical membrane pores. Enalapril treatment also significantly limited (P less than 0.01) the development of glomerular structural lesions (mean percentage of sclerotic glomeruli was 4.2 +/- 3.5% [treated] vs. 28 +/- 15% [untreated] rats at the end of the study) as well as tubulo-interstitial damage. These results suggest that the protective effect of enalapril on the development of proteinuria and glomerular sclerosis in this model is due to its property of ameliorating size selectivity and hydraulic permeability of the glomerular capillaries.

Full text

PDF
541

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson S., Diamond J. R., Karnovsky M. J., Brenner B. M. Mechanisms underlying transition from acute glomerular injury to late glomerular sclerosis in a rat model of nephrotic syndrome. J Clin Invest. 1988 Nov;82(5):1757–1768. doi: 10.1172/JCI113789. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Anderson S., Meyer T. W., Rennke H. G., Brenner B. M. Control of glomerular hypertension limits glomerular injury in rats with reduced renal mass. J Clin Invest. 1985 Aug;76(2):612–619. doi: 10.1172/JCI112013. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Anderson S., Rennke H. G., Brenner B. M. Therapeutic advantage of converting enzyme inhibitors in arresting progressive renal disease associated with systemic hypertension in the rat. J Clin Invest. 1986 Jun;77(6):1993–2000. doi: 10.1172/JCI112528. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Arendshorst W. J., Gottschalk C. W. Glomerular ultrafiltration dynamics: historical perspective. Am J Physiol. 1985 Feb;248(2 Pt 2):F163–F174. doi: 10.1152/ajprenal.1985.248.2.F163. [DOI] [PubMed] [Google Scholar]
  5. Benson J. R., Hare P. E. O-phthalaldehyde: fluorogenic detection of primary amines in the picomole range. Comparison with fluorescamine and ninhydrin. Proc Natl Acad Sci U S A. 1975 Feb;72(2):619–622. doi: 10.1073/pnas.72.2.619. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bertani T., Cutillo F., Zoja C., Broggini M., Remuzzi G. Tubulo-interstitial lesions mediate renal damage in adriamycin glomerulopathy. Kidney Int. 1986 Oct;30(4):488–496. doi: 10.1038/ki.1986.212. [DOI] [PubMed] [Google Scholar]
  7. Bertani T., Poggi A., Pozzoni R., Delaini F., Sacchi G., Thoua Y., Mecca G., Remuzzi G., Donati M. B. Adriamycin-induced nephrotic syndrome in rats: sequence of pathologic events. Lab Invest. 1982 Jan;46(1):16–23. [PubMed] [Google Scholar]
  8. Bertani T., Zoja C., Abbate M., Rossini M., Remuzzi G. Age-related nephropathy and proteinuria in rats with intact kidneys exposed to diets with different protein content. Lab Invest. 1989 Feb;60(2):196–204. [PubMed] [Google Scholar]
  9. Beukers J. J., Hoedemaeker P. J., Weening J. J. A comparison of the effects of converting-enzyme inhibition and protein restriction in experimental nephrosis. Lab Invest. 1988 Nov;59(5):631–640. [PubMed] [Google Scholar]
  10. Bohrer M. P., Baylis C., Robertson C. R., Brenner B. M., Troy J. L., Willis W. T. Mechanisms of the puromycin-induced defects in the transglomerular passage of water and macromolecules. J Clin Invest. 1977 Jul;60(1):152–161. doi: 10.1172/JCI108751. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Brenner B. M., Meyer T. W., Hostetter T. H. Dietary protein intake and the progressive nature of kidney disease: the role of hemodynamically mediated glomerular injury in the pathogenesis of progressive glomerular sclerosis in aging, renal ablation, and intrinsic renal disease. N Engl J Med. 1982 Sep 9;307(11):652–659. doi: 10.1056/NEJM198209093071104. [DOI] [PubMed] [Google Scholar]
  12. Deen W. M., Bohrer M. P., Brenner B. M. Macromolecule transport across glomerular capillaries: application of pore theory. Kidney Int. 1979 Sep;16(3):353–365. doi: 10.1038/ki.1979.138. [DOI] [PubMed] [Google Scholar]
  13. Deen W. M., Bridges C. R., Brenner B. M., Myers B. D. Heteroporous model of glomerular size selectivity: application to normal and nephrotic humans. Am J Physiol. 1985 Sep;249(3 Pt 2):F374–F389. doi: 10.1152/ajprenal.1985.249.3.F374. [DOI] [PubMed] [Google Scholar]
  14. Elema J. D., Arends A. Focal and segmental glomerular hyalinosis and sclerosis in the rat. Lab Invest. 1975 Nov;33(5):554–561. [PubMed] [Google Scholar]
  15. FUHR J., KACZMARCZYK J., KRUTTGEN C. D. Eine einfache colorimetrische Methode zur Inulinbestimmung für Nieren-Clearance-Untersuchungen bei Stoffwechselgesunden und Diabetikern. Klin Wochenschr. 1955 Aug 1;33(29-30):729–730. doi: 10.1007/BF01473295. [DOI] [PubMed] [Google Scholar]
  16. Fogo A., Yoshida Y., Glick A. D., Homma T., Ichikawa I. Serial micropuncture analysis of glomerular function in two rat models of glomerular sclerosis. J Clin Invest. 1988 Jul;82(1):322–330. doi: 10.1172/JCI113590. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Fries J. W., Sandstrom D. J., Meyer T. W., Rennke H. G. Glomerular hypertrophy and epithelial cell injury modulate progressive glomerulosclerosis in the rat. Lab Invest. 1989 Feb;60(2):205–218. [PubMed] [Google Scholar]
  18. Granath K. A., Kvist B. E. Molecular weight distribution analysis by gel chromatography on Sephadex. J Chromatogr. 1967 May;28(1):69–81. doi: 10.1016/s0021-9673(01)85930-6. [DOI] [PubMed] [Google Scholar]
  19. Grond J., Schilthuis M. S., Koudstaal J., Elema J. D. Mesangial function and glomerular sclerosis in rats after unilateral nephrectomy. Kidney Int. 1982 Oct;22(4):338–343. doi: 10.1038/ki.1982.178. [DOI] [PubMed] [Google Scholar]
  20. Hackbarth H., Büttner D., Jarck D., Pothmann M., Messow C., Gärtner K. Distribution of glomeruli in the renal cortex of Munich Wistar Frömter (MWF) rats. Ren Physiol. 1983;6(2):63–71. doi: 10.1159/000172882. [DOI] [PubMed] [Google Scholar]
  21. Hostetter T. H., Olson J. L., Rennke H. G., Venkatachalam M. A., Brenner B. M. Hyperfiltration in remnant nephrons: a potentially adverse response to renal ablation. Am J Physiol. 1981 Jul;241(1):F85–F93. doi: 10.1152/ajprenal.1981.241.1.F85. [DOI] [PubMed] [Google Scholar]
  22. Hostetter T. H., Troy J. L., Brenner B. M. Glomerular hemodynamics in experimental diabetes mellitus. Kidney Int. 1981 Mar;19(3):410–415. doi: 10.1038/ki.1981.33. [DOI] [PubMed] [Google Scholar]
  23. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  24. Landriani G. S., Guardabasso V., Rocchetti M. NL-FIT: a microcomputer program for non-linear fitting. Comput Programs Biomed. 1983 Feb-Apr;16(1-2):35–42. doi: 10.1016/0010-468x(83)90006-5. [DOI] [PubMed] [Google Scholar]
  25. Marinides G. N., Groggel G. C., Cohen A. H., Cook T., Baranowski R. L., Westenfelder C., Border W. A. Failure of angiotensin converting enzyme inhibition to affect the course of chronic puromycin aminonucleoside nephropathy. Am J Pathol. 1987 Nov;129(2):394–401. [PMC free article] [PubMed] [Google Scholar]
  26. Pfeffer J. M., Pfeffer M. A., Frohlich E. D. Validity of an indirect tail-cuff method for determining systolic arterial pressure in unanesthetized normotensive and spontaneously hypertensive rats. J Lab Clin Med. 1971 Dec;78(6):957–962. [PubMed] [Google Scholar]
  27. Read S. M., Northcote D. H. Minimization of variation in the response to different proteins of the Coomassie blue G dye-binding assay for protein. Anal Biochem. 1981 Sep 1;116(1):53–64. doi: 10.1016/0003-2697(81)90321-3. [DOI] [PubMed] [Google Scholar]
  28. Remuzzi A., Battaglia C., Rossi L., Zoja C., Remuzzi G. Glomerular size selectivity in nephrotic rats exposed to diets with different protein content. Am J Physiol. 1987 Aug;253(2 Pt 2):F318–F327. doi: 10.1152/ajprenal.1987.253.2.F318. [DOI] [PubMed] [Google Scholar]
  29. Remuzzi A., Puntorieri S., Mazzoleni A., Remuzzi G. Sex related differences in glomerular ultrafiltration and proteinuria in Munich-Wistar rats. Kidney Int. 1988 Oct;34(4):481–486. doi: 10.1038/ki.1988.206. [DOI] [PubMed] [Google Scholar]
  30. Shemesh O., Ross J. C., Deen W. M., Grant G. W., Myers B. D. Nature of the glomerular capillary injury in human membranous glomerulopathy. J Clin Invest. 1986 Mar;77(3):868–877. doi: 10.1172/JCI112384. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Smith H. W., Finkelstein N., Aliminosa L., Crawford B., Graber M. THE RENAL CLEARANCES OF SUBSTITUTED HIPPURIC ACID DERIVATIVES AND OTHER AROMATIC ACIDS IN DOG AND MAN. J Clin Invest. 1945 May;24(3):388–404. doi: 10.1172/JCI101618. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Viets J. W., Deen W. M., Troy J. L., Brenner B. M. Determination of serum protein concentration in nanoliter blood samples using fluorescamine or 9-phthalaldehyde. Anal Biochem. 1978 Aug 1;88(2):513–521. doi: 10.1016/0003-2697(78)90451-7. [DOI] [PubMed] [Google Scholar]
  33. Wallenstein S., Zucker C. L., Fleiss J. L. Some statistical methods useful in circulation research. Circ Res. 1980 Jul;47(1):1–9. doi: 10.1161/01.res.47.1.1. [DOI] [PubMed] [Google Scholar]
  34. Weening J. J., Rennke H. G. Glomerular permeability and polyanion in adriamycin nephrosis in the rat. Kidney Int. 1983 Aug;24(2):152–159. doi: 10.1038/ki.1983.139. [DOI] [PubMed] [Google Scholar]
  35. Winetz J. A., Golbetz H. V., Spencer R. J., Lee J. A., Myers B. D. Glomerular function in advanced human diabetic nephropathy. Kidney Int. 1982 May;21(5):750–756. doi: 10.1038/ki.1982.93. [DOI] [PubMed] [Google Scholar]
  36. Yoshida Y., Fogo A., Ichikawa I. Glomerular hemodynamic changes vs. hypertrophy in experimental glomerular sclerosis. Kidney Int. 1989 Feb;35(2):654–660. doi: 10.1038/ki.1989.35. [DOI] [PubMed] [Google Scholar]
  37. Yoshioka T., Mitarai T., Kon V., Deen W. M., Rennke H. G., Ichikawa I. Role for angiotensin II in an overt functional proteinuria. Kidney Int. 1986 Oct;30(4):538–545. doi: 10.1038/ki.1986.219. [DOI] [PubMed] [Google Scholar]
  38. Yoshioka T., Shiraga H., Yoshida Y., Fogo A., Glick A. D., Deen W. M., Hoyer J. R., Ichikawa I. "Intact nephrons" as the primary origin of proteinuria in chronic renal disease. Study in the rat model of subtotal nephrectomy. J Clin Invest. 1988 Nov;82(5):1614–1623. doi: 10.1172/JCI113773. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Zatz R., Dunn B. R., Meyer T. W., Anderson S., Rennke H. G., Brenner B. M. Prevention of diabetic glomerulopathy by pharmacological amelioration of glomerular capillary hypertension. J Clin Invest. 1986 Jun;77(6):1925–1930. doi: 10.1172/JCI112521. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Zatz R., Meyer T. W., Rennke H. G., Brenner B. M. Predominance of hemodynamic rather than metabolic factors in the pathogenesis of diabetic glomerulopathy. Proc Natl Acad Sci U S A. 1985 Sep;82(17):5963–5967. doi: 10.1073/pnas.82.17.5963. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES