Abstract
Epidermal cholesterol biosynthesis is regulated by barrier function. We quantitated the amount and activation state (phosphorylation-dephosphorylation) of the rate-limiting enzyme, 3-hydroxy-3-methylglutaryl coenzyme A (HMG CoA) reductase, in epidermis before and after barrier disruption. In murine epidermis we found high enzyme activity (1.75 +/- 0.02 nmol/min per mg protein). After acute barrier disruption, enzyme activity began to increase after 1.5 h, reaching a maximum increase by 2.5 h, and returned to normal by 15 h. Chronic barrier disruption increased total enzyme activity by 83%. In normal epidermis, measurement of HMG CoA reductase activity in microsomes isolated in NaF- vs. NaCl-containing buffers demonstrated that 46 +/- 2% of the enzyme was in the active form. After acute or chronic barrier disruption, a marked increase in the percentage of HMG CoA reductase in the active form was observed. Acute disruption increased enzyme activation state as early as 15 min, reaching a maximum after 2.5 h, with an increase still present at 15 h, indicating that changes in activation state had a close temporal relationship with barrier function. Increases in total HMG CoA reductase activity occurred only after profound barrier disruption, whereas changes in activation state occur with lesser degrees of barrier disruption. Artificial correction of barrier function prevented the increase in total HMG CoA reductase activity, and partially prevented the increase in enzyme activation. These results show that barrier requirements regulate epidermal cholesterol synthesis by modulating both the HMG CoA reductase amount and activation state.
Full text
PDF








Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Andersen J. M., Dietschy J. M. Regulation of sterol synthesis in 15 tissues of rat. II. Role of rat and human high and low density plasma lipoproteins and of rat chylomicron remnants. J Biol Chem. 1977 Jun 10;252(11):3652–3659. [PubMed] [Google Scholar]
- Arebalo R. E., Hardgrave J. E., Noland B. J., Scallen T. J. In vivo regulation of rat liver 3-hydroxy-3-methylglutaryl-coenzyme A reductase: enzyme phosphorylation as an early regulatory response after intragastric administration of mevalonolactone. Proc Natl Acad Sci U S A. 1980 Nov;77(11):6429–6433. doi: 10.1073/pnas.77.11.6429. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Arebalo R. E., Hardgrave J. E., Scallen T. J. The in vivo regulation of rat liver 3-hydroxy-3-methylglutaryl coenzyme A reductase. Phosphorylation of the enzyme as an early regulatory response following cholesterol feeding. J Biol Chem. 1981 Jan 25;256(2):571–574. [PubMed] [Google Scholar]
- Beg Z. H., Stonik J. A., Brewer H. B., Jr 3-Hydroxy-3-methylglutaryl coenzyme A reductase: regulation of enzymatic activity by phosphorylation and dephosphorylation. Proc Natl Acad Sci U S A. 1978 Aug;75(8):3678–3682. doi: 10.1073/pnas.75.8.3678. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brannan P. G., Goldstein J. L., Brown M. S. 3-hydroxy-3-methylglutaryl coenzyme A reductase activity in human hair roots. J Lipid Res. 1975 Jan;16(1):7–11. [PubMed] [Google Scholar]
- Brown M. S., Goldstein J. L., Dietschy J. M. Active and inactive forms of 3-hydroxy-3-methylglutaryl coenzyme A reductase in the liver of the rat. Comparison with the rate of cholesterol synthesis in different physiological states. J Biol Chem. 1979 Jun 25;254(12):5144–5149. [PubMed] [Google Scholar]
- Edwards P. A., Lemongello D., Kane J., Shechter I., Fogelman A. M. Properties of purified rat hepatic 3-hydroxy-3-methylglutaryl coenzyme A reductase and regulation of enzyme activity. J Biol Chem. 1980 Apr 25;255(8):3715–3725. [PubMed] [Google Scholar]
- Erickson S. K., Shrewsbury M. A., Gould R. G., Cooper A. D. Studies on the mechanisms of the rapid modulation of 3-hydroxy-3-methylglutaryl coenzyme A reductase in intact liver by mevalonolactone and 25-hydroxycholesterol. Biochim Biophys Acta. 1980 Oct 6;620(1):70–79. doi: 10.1016/0005-2760(80)90186-1. [DOI] [PubMed] [Google Scholar]
- Feingold K. R., Brown B. E., Lear S. R., Moser A. H., Elias P. M. Effect of essential fatty acid deficiency on cutaneous sterol synthesis. J Invest Dermatol. 1986 Nov;87(5):588–591. doi: 10.1111/1523-1747.ep12455835. [DOI] [PubMed] [Google Scholar]
- Feingold K. R., Brown B. E., Lear S. R., Moser A. H., Elias P. M. Localization of de novo sterologenesis in mammalian skin. J Invest Dermatol. 1983 Oct;81(4):365–369. doi: 10.1111/1523-1747.ep12519974. [DOI] [PubMed] [Google Scholar]
- Feingold K. R., MacRae G., Moser A. H., Wu J., Siperstein M. D., Wiley M. H. Differences in de novo cholesterol synthesis between the intact male and female rat. Endocrinology. 1983 Jan;112(1):96–103. doi: 10.1210/endo-112-1-96. [DOI] [PubMed] [Google Scholar]
- Feingold K. R., Wiley M. H., MacRae G., Lear S., Moser A. H., Zsigmond G., Siperstein M. D. De novo sterologenesis in the intact rat. Metabolism. 1983 Jan;32(1):75–81. doi: 10.1016/0026-0495(83)90160-9. [DOI] [PubMed] [Google Scholar]
- Feingold K. R., Wiley M. H., Moser A. H., Lau D. T., Lear S. R., Siperstein M. D. De novo sterologenesis in intact primates. J Lab Clin Med. 1982 Sep;100(3):405–410. [PubMed] [Google Scholar]
- Feingold K. R., Wiley M. H., Moser A. H., Lear S. R., Siperstein M. D. Activation of HMG-CoA reductase by microsomal phosphatase. J Lipid Res. 1983 Mar;24(3):290–296. [PubMed] [Google Scholar]
- Feingold K. R., Wiley M. H., Moser A. H., Siperstein M. D. Altered activation state of hydroxymethylglutaryl-coenzyme A reductase in liver tumors. Arch Biochem Biophys. 1983 Oct 1;226(1):231–241. doi: 10.1016/0003-9861(83)90289-8. [DOI] [PubMed] [Google Scholar]
- Gibson D. M., Ingebritsen T. S. Reversible modulation of liver hydroxymethylglutaryl CoA reductase. Life Sci. 1978 Dec 31;23(27-28):2649–2664. doi: 10.1016/0024-3205(78)90644-6. [DOI] [PubMed] [Google Scholar]
- Gotham S. M., Fryer P. J., Paterson W. R. The measurement of insoluble proteins using a modified Bradford assay. Anal Biochem. 1988 Sep;173(2):353–358. doi: 10.1016/0003-2697(88)90199-6. [DOI] [PubMed] [Google Scholar]
- Grubauer G., Elias P. M., Feingold K. R. Transepidermal water loss: the signal for recovery of barrier structure and function. J Lipid Res. 1989 Mar;30(3):323–333. [PubMed] [Google Scholar]
- Grubauer G., Feingold K. R., Elias P. M. Relationship of epidermal lipogenesis to cutaneous barrier function. J Lipid Res. 1987 Jun;28(6):746–752. [PubMed] [Google Scholar]
- Hardgrave J. E., Heller R. A., Herrera M. G., Scallen T. J. Immunotitration of 3-hydroxy-3-methylglutaryl-coenzyme A reductase in various physiological states. Proc Natl Acad Sci U S A. 1979 Aug;76(8):3834–3838. doi: 10.1073/pnas.76.8.3834. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Imokawa G., Mishima Y. Cumulative effect of surfactants on cutaneous horny layers: adsorption onto human keratin layers in vivo. Contact Dermatitis. 1979 Dec;5(6):357–366. doi: 10.1111/j.1600-0536.1979.tb04905.x. [DOI] [PubMed] [Google Scholar]
- Kennelly P. J., Rodwell V. W. Regulation of 3-hydroxy-3-methylglutaryl coenzyme A reductase by reversible phosphorylation-dephosphorylation. J Lipid Res. 1985 Aug;26(8):903–914. [PubMed] [Google Scholar]
- Kleinsek D. A., Jabalquinto A. M., Porter J. W. In vivo and in vitro mechanisms regulating rat liver beta-hydroxy-beta-methylglutaryl coenzyme A reductase activity. J Biol Chem. 1980 May 10;255(9):3918–3923. [PubMed] [Google Scholar]
- Lowe N. J., Stoughton R. B. Essential fatty acid deficient hairless mouse: a model of chronic epidermal hyperproliferation. Br J Dermatol. 1977 Feb;96(2):155–162. doi: 10.1111/j.1365-2133.1977.tb12537.x. [DOI] [PubMed] [Google Scholar]
- Menon G. K., Feingold K. R., Moser A. H., Brown B. E., Elias P. M. De novo sterologenesis in the skin. II. Regulation by cutaneous barrier requirements. J Lipid Res. 1985 Apr;26(4):418–427. [PubMed] [Google Scholar]
- Mommaas-Kienhuis A. M., Grayson S., Wijsman M. C., Vermeer B. J., Elias P. M. Low density lipoprotein receptor expression on keratinocytes in normal and psoriatic epidermis. J Invest Dermatol. 1987 Nov;89(5):513–517. doi: 10.1111/1523-1747.ep12461024. [DOI] [PubMed] [Google Scholar]
- Monger D. J., Williams M. L., Feingold K. R., Brown B. E., Elias P. M. Localization of sites of lipid biosynthesis in mammalian epidermis. J Lipid Res. 1988 May;29(5):603–612. [PubMed] [Google Scholar]
- Parker R. A., Miller S. J., Gibson D. M. Phosphorylation of native 97-kDa 3-hydroxy-3-methylglutaryl-coenzyme A reductase from rat liver. Impact on activity and degradation of the enzyme. J Biol Chem. 1989 Mar 25;264(9):4877–4887. [PubMed] [Google Scholar]
- Ponec M., Havekes L., Kempenaar J., Vermeer B. J. Cultured human skin fibroblasts and keratinocytes: differences in the regulation of cholesterol synthesis. J Invest Dermatol. 1983 Aug;81(2):125–130. doi: 10.1111/1523-1747.ep12542979. [DOI] [PubMed] [Google Scholar]
- Rodwell V. W., Nordstrom J. L., Mitschelen J. J. Regulation of HMG-CoA reductase. Adv Lipid Res. 1976;14:1–74. doi: 10.1016/b978-0-12-024914-5.50008-5. [DOI] [PubMed] [Google Scholar]
- Siegenthaler U., Laine A., Polak L. Studies on contact sensitivity to chromium in the guinea pig. The role of valence in the formation of the antigenic determinant. J Invest Dermatol. 1983 Jan;80(1):44–47. doi: 10.1111/1523-1747.ep12531034. [DOI] [PubMed] [Google Scholar]
- Siperstein M. D. Role of cholesterogenesis and isoprenoid synthesis in DNA replication and cell growth. J Lipid Res. 1984 Dec 15;25(13):1462–1468. [PubMed] [Google Scholar]
- Turley S. D., Andersen J. M., Dietschy J. M. Rates of sterol synthesis and uptake in the major organs of the rat in vivo. J Lipid Res. 1981 May;22(4):551–569. [PubMed] [Google Scholar]
- Williams M. A., Tamai K. T., Hincenbergs I., McIntosh D. J. Hydrogenated coconut oil and tissue fatty acids in EFA-depleted and EFA-supplemented rats. J Nutr. 1972 Jul;102(7):847–855. doi: 10.1093/jn/102.7.847. [DOI] [PubMed] [Google Scholar]
- Williams M. L., Elias P. M. The extracellular matrix of stratum corneum: role of lipids in normal and pathological function. Crit Rev Ther Drug Carrier Syst. 1987;3(2):95–122. [PubMed] [Google Scholar]
- Williams M. L., Mommaas-Kienhuis A. M., Rutherford S. L., Grayson S., Vermeer B. J., Elias P. M. Free sterol metabolism and low density lipoprotein receptor expression as differentiation markers of cultured human keratinocytes. J Cell Physiol. 1987 Sep;132(3):428–440. doi: 10.1002/jcp.1041320305. [DOI] [PubMed] [Google Scholar]