Abstract
We studied the effect of the orientation of the 7-hydroxyl group in taurocholate (7 alpha) and tauroursocholate (7 beta) on the feedback regulation of bile-acid synthesis and its rate-controlling enzyme, cholesterol 7 alpha-hydroxylase, in bile-fistula rats. To ensure a constant supply of cholesterol and to label newly synthesized bile acids, RS[2-14C]mevalonolactone was infused intraduodenally at 154 mumol/h before and during bile-acid infusion. Mevalonolactone inhibited hydroxymethyl-glutaryl CoA reductase activity 90% but did not increase bile-acid synthesis and cholesterol 7 alpha-hydroxylase activity. When sodium taurocholate was infused at the rate of 27 mumol/100 g rat per h (equivalent to the hourly hepatic bile-acid flux), bile-acid synthesis decreased 82% and cholesterol 7 alpha-hydroxylase activity declined 78%. This inhibitory effect was observed in the absence of hepatic damage. In contrast, sodium tauroursocholate infused at the same rate did not decrease bile-acid synthesis nor cholesterol 7 alpha-hydroxylase activity. Hepatic cholesterol content rose 36% with sodium taurocholate but did not change during sodium tauroursocholate administration. These results demonstrate that the feedback inhibition of bile-acid synthesis is mediated through the regulation of cholesterol 7 alpha-hydroxylase. In these experiments, taurocholate was a far more potent inhibitor than its 7 beta-hydroxy epimer, tauroursocholate.
Full text
PDF







Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Danielsson H., Einarsson K., Johansson G. Effect of biliary drainage on individual reactions in the conversion of cholesterol to taurochlic acid. Bile acids and steroids 180. Eur J Biochem. 1967 Jul;2(1):44–49. doi: 10.1111/j.1432-1033.1967.tb00103.x. [DOI] [PubMed] [Google Scholar]
- Davis R. A., Musso C. A., Malone-McNeal M., Lattier G. R., Hyde P. M., Archambault-Schexnayder J., Straka M. Examination of bile acid negative feedback regulation in rats. J Lipid Res. 1988 Feb;29(2):202–211. [PubMed] [Google Scholar]
- Duane W. C., McHale A. P., Hamilton J. N. Studies of feedback suppression of bile salt synthesis in the bile-fistula rat. J Lipid Res. 1988 Feb;29(2):212–214. [PubMed] [Google Scholar]
- Einarsson K., Hellström K., Kallner M. Feedback regulation of bile acid formation in man. Metabolism. 1973 Dec;22(12):1477–1483. doi: 10.1016/0026-0495(73)90015-2. [DOI] [PubMed] [Google Scholar]
- Harwood H. J., Jr, Schneider M., Stacpoole P. W. Regulation of human leukocyte microsomal hydroxymethylglutaryl-CoA reductase activity by a phosphorylation and dephosphorylation mechanism. Biochim Biophys Acta. 1984 Nov 13;805(3):245–251. doi: 10.1016/0167-4889(84)90079-x. [DOI] [PubMed] [Google Scholar]
- Heuman D. M., Hernandez C. R., Hylemon P. B., Kubaska W. M., Hartman C., Vlahcevic Z. R. Regulation of bile acid synthesis. I. Effects of conjugated ursodeoxycholate and cholate on bile acid synthesis in chronic bile fistula rat. Hepatology. 1988 Mar-Apr;8(2):358–365. doi: 10.1002/hep.1840080228. [DOI] [PubMed] [Google Scholar]
- Heuman D. M., Vlahcevic Z. R., Bailey M. L., Hylemon P. B. Regulation of bile acid synthesis. II. Effect of bile acid feeding on enzymes regulating hepatic cholesterol and bile acid synthesis in the rat. Hepatology. 1988 Jul-Aug;8(4):892–897. doi: 10.1002/hep.1840080431. [DOI] [PubMed] [Google Scholar]
- Kuipers F., Havinga R., Bosschieter H., Toorop G. P., Hindriks F. R., Vonk R. J. Enterohepatic circulation in the rat. Gastroenterology. 1985 Feb;88(2):403–411. doi: 10.1016/0016-5085(85)90499-8. [DOI] [PubMed] [Google Scholar]
- Nguyen L. B., Shefer S., Salen G., Horak I., Tint G. S., McNamara D. J. The effect of abnormal plasma and cellular sterol content and composition on low density lipoprotein uptake and degradation by monocytes and lymphocytes in sitosterolemia with xanthomatosis. Metabolism. 1988 Apr;37(4):346–351. doi: 10.1016/0026-0495(88)90134-5. [DOI] [PubMed] [Google Scholar]
- Nilsell K., Angelin B., Leijd B., Einarsson K. Comparative effects of ursodeoxycholic acid and chenodeoxycholic acid on bile acid kinetics and biliary lipid secretion in humans. Evidence for different modes of action on bile acid synthesis. Gastroenterology. 1983 Dec;85(6):1248–1256. [PubMed] [Google Scholar]
- Pries J. M., Gustafson A., Wiegand D., Duane W. C. Taurocholate is more potent than cholate in suppression of bile salt synthesis in the rat. J Lipid Res. 1983 Feb;24(2):141–146. [PubMed] [Google Scholar]
- Reinhart M. P., Billheimer J. T., Faust J. R., Gaylor J. L. Subcellular localization of the enzymes of cholesterol biosynthesis and metabolism in rat liver. J Biol Chem. 1987 Jul 15;262(20):9649–9655. [PubMed] [Google Scholar]
- Shefer S., Cheng F. W., Hauser S., Batta A. K., Salen G. Regulation of bile acid synthesis. Measurement of cholesterol 7 alpha-hydroxylase activity in rat liver microsomal preparations in the absence of endogenous cholesterol. J Lipid Res. 1981 Mar;22(3):532–536. [PubMed] [Google Scholar]
- Shefer S., Hauser S., Bekersky I., Mosbach E. H. Biochemical site of regulation of bile acid biosynthesis in the rat. J Lipid Res. 1970 Sep;11(5):404–411. [PubMed] [Google Scholar]
- Shefer S., Hauser S., Bekersky I., Mosbach E. H. Feedback regulation of bile acid biosynthesis in the rat. J Lipid Res. 1969 Nov;10(6):646–655. [PubMed] [Google Scholar]
- Shefer S., Hauser S., Lapar V., Mosbach E. H. Regulatory effects of sterols and bile acids on hepatic 3-hydroxy-3-methylglutaryl CoA reductase and cholesterol 7alpha-hydroxylase in the rat. J Lipid Res. 1973 Sep;14(5):573–580. [PubMed] [Google Scholar]
- Shefer S., Salen G., Nguyen L., Batta A. K., Packin V., Tint G. S., Hauser S. Competitive inhibition of bile acid synthesis by endogenous cholestanol and sitosterol in sitosterolemia with xanthomatosis. Effect on cholesterol 7 alpha-hydroxylase. J Clin Invest. 1988 Dec;82(6):1833–1839. doi: 10.1172/JCI113799. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shefer S., Zaki F. G., Salen G. Early morphologic and enzymatic changes in livers of rats treated with chenodeoxycholic and ursodeoxycholic acids. Hepatology. 1983 Mar-Apr;3(2):201–208. doi: 10.1002/hep.1840030212. [DOI] [PubMed] [Google Scholar]
- Stange E. F., Scheibner J., Lutz C., Ditschuneit H. Feedback regulation of bile acid synthesis in the rat by dietary vs. intravenous cholate or taurocholate. Hepatology. 1988 Jul-Aug;8(4):879–886. doi: 10.1002/hep.1840080429. [DOI] [PubMed] [Google Scholar]
- Tint G. S., Bullock J., Batta A. K., Shefer S., Salen G. Ursodeoxycholic acid, 7-ketolithocholic acid, and chenodeoxycholic acid are primary bile acids of the nutria (Myocastor coypus). Gastroenterology. 1986 Mar;90(3):702–709. doi: 10.1016/0016-5085(86)91126-1. [DOI] [PubMed] [Google Scholar]
- Tserng K. Y., Hachey D. L., Klein P. D. An improved procedure for the synthesis of glycine and taurine conjugates of bile acids. J Lipid Res. 1977 May;18(3):404–407. [PubMed] [Google Scholar]
- Weis E. E., Barth C. A. The extracorporeal bile duct: a new model for determination of bile flow and bile composition in the intact rat. J Lipid Res. 1978 Sep;19(7):856–862. [PubMed] [Google Scholar]
- Yasukochi Y., Masters B. S. Some properties of a detergent-solubilized NADPH-cytochrome c(cytochrome P-450) reductase purified by biospecific affinity chromatography. J Biol Chem. 1976 Sep 10;251(17):5337–5344. [PubMed] [Google Scholar]






