Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1990 Apr;85(4):1274–1279. doi: 10.1172/JCI114564

Augmentation of the natriuretic activity of exogenous and endogenous atriopeptin in rats by inhibition of guanosine 3',5'-cyclic monophosphate degradation.

M R Wilkins 1, S L Settle 1, P Needleman 1
PMCID: PMC296563  PMID: 2156897

Abstract

To investigate the relationship between AP, cyclic GMP, and sodium excretion, we studied the effect of a cyclic GMP phosphodiesterase inhibitor (M + B22948) on the natriuretic response to (a) an infusion of AP (103-126) and (b) acute volume expansion in rats. The phosphodiesterase inhibitor markedly potentiated the effect of low-dose AP infusions on urinary sodium and cyclic GMP excretion without potentiating the fall in blood pressure. Acute volume expansion (1% body wt) led to small but significant (P less than 0.01) rises in plasma AP and urinary cyclic GMP levels. Pretreatment with the phosphodiesterase inhibitor enhanced the natriuretic and cyclic GMP response to volume loading, an effect that was attenuated by administration of a monoclonal antibody directed against AP. These data indicate that cyclic GMP mediates the natriuretic activity of AP and AP and cyclic GMP play active roles in the natriuresis of acute volume expansion. Moreover, pharmacological manipulation of cyclic GMP levels may prove a useful therapeutic strategy for facilitating the natriuretic but not the hypotensive effects of AP.

Full text

PDF
1274

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bauminger S., Wilchek M. The use of carbodiimides in the preparation of immunizing conjugates. Methods Enzymol. 1980;70(A):151–159. doi: 10.1016/s0076-6879(80)70046-0. [DOI] [PubMed] [Google Scholar]
  2. Bergstrand H., Kristoffersson J., Lundquist B., Schurmann A. Effects of antiallergic agents, compound 48/80, and some reference inhibitors on the activity of partially purified human lung tissue adenosine cyclic 3',5'-monophosphate and guanosine cyclic 3',5'-monophosphate phosphodiesterases. Mol Pharmacol. 1977 Jan;13(1):38–43. [PubMed] [Google Scholar]
  3. Chinkers M., Garbers D. L., Chang M. S., Lowe D. G., Chin H. M., Goeddel D. V., Schulz S. A membrane form of guanylate cyclase is an atrial natriuretic peptide receptor. Nature. 1989 Mar 2;338(6210):78–83. doi: 10.1038/338078a0. [DOI] [PubMed] [Google Scholar]
  4. Dietz J. R. Release of natriuretic factor from rat heart-lung preparation by atrial distension. Am J Physiol. 1984 Dec;247(6 Pt 2):R1093–R1096. doi: 10.1152/ajpregu.1984.247.6.R1093. [DOI] [PubMed] [Google Scholar]
  5. GREENWOOD F. C., HUNTER W. M., GLOVER J. S. THE PREPARATION OF I-131-LABELLED HUMAN GROWTH HORMONE OF HIGH SPECIFIC RADIOACTIVITY. Biochem J. 1963 Oct;89:114–123. doi: 10.1042/bj0890114. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Galfre G., Howe S. C., Milstein C., Butcher G. W., Howard J. C. Antibodies to major histocompatibility antigens produced by hybrid cell lines. Nature. 1977 Apr 7;266(5602):550–552. doi: 10.1038/266550a0. [DOI] [PubMed] [Google Scholar]
  7. Gerbes A. L., Arendt R. M., Gerzer R., Schnizer W., Jüngst D., Paumgartner G., Wernze H. Role of atrial natriuretic factor, cyclic GMP and the renin-aldosterone system in acute volume regulation of healthy human subjects. Eur J Clin Invest. 1988 Aug;18(4):425–429. doi: 10.1111/j.1365-2362.1988.tb01035.x. [DOI] [PubMed] [Google Scholar]
  8. Henrich W. L., McAllister E. A., Smith P. B., Campbell W. B. Guanosine 3',5'-cyclic monophosphate as a mediator of inhibition of renin release. Am J Physiol. 1988 Sep;255(3 Pt 2):F474–F478. doi: 10.1152/ajprenal.1988.255.3.F474. [DOI] [PubMed] [Google Scholar]
  9. Hirth C., Stasch J. P., John A., Kazda S., Morich F., Neuser D., Wohlfeil S. The renal response to acute hypervolemia is caused by atrial natriuretic peptides. J Cardiovasc Pharmacol. 1986 Mar-Apr;8(2):268–275. doi: 10.1097/00005344-198603000-00008. [DOI] [PubMed] [Google Scholar]
  10. Huang C. L., Ives H. E., Cogan M. G. In vivo evidence that cGMP is the second messenger for atrial natriuretic factor. Proc Natl Acad Sci U S A. 1986 Oct;83(20):8015–8018. doi: 10.1073/pnas.83.20.8015. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Ito K., Yukimura T., Takenaga T., Yamamoto K., Kangawa K., Matsuo H. Small intestine as possible source of increased plasma cGMP after administration of alpha-hANP to dogs. Am J Physiol. 1988 Jun;254(6 Pt 1):G814–G818. doi: 10.1152/ajpgi.1988.254.6.G814. [DOI] [PubMed] [Google Scholar]
  12. Lewis H. M., Wilkins M. R., Selwyn B. M., Yelland U. J., Griffith M. E., Bhoola K. D. Urinary guanosine 3':5'-cyclic monophosphate but not tissue kallikrein follows the plasma atrial natriuretic factor response to acute volume expansion with saline. Clin Sci (Lond) 1988 Nov;75(5):489–494. doi: 10.1042/cs0750489. [DOI] [PubMed] [Google Scholar]
  13. Light D. B., Schwiebert E. M., Karlson K. H., Stanton B. A. Atrial natriuretic peptide inhibits a cation channel in renal inner medullary collecting duct cells. Science. 1989 Jan 20;243(4889):383–385. doi: 10.1126/science.2463673. [DOI] [PubMed] [Google Scholar]
  14. Martin W., Morgan R. O., Smith J. A., White D. G. Atriopeptin II-induced relaxation of rabbit aorta is potentiated by M&B 22,948 but not blocked by haemoglobin. Br J Pharmacol. 1986 Nov;89(3):557–561. doi: 10.1111/j.1476-5381.1986.tb11156.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Martin W., White D. G., Henderson A. H. Endothelium-derived relaxing factor and atriopeptin II elevate cyclic GMP levels in pig aortic endothelial cells. Br J Pharmacol. 1988 Jan;93(1):229–239. doi: 10.1111/j.1476-5381.1988.tb11426.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Matsuoka H., Ishii M., Sugimoto T., Hirata Y., Sugimoto T., Kangawa K., Matsuo H. Inhibition of aldosterone production by alpha-human atrial natriuretic polypeptide is associated with an increase in cGMP production. Biochem Biophys Res Commun. 1985 Mar 29;127(3):1052–1056. doi: 10.1016/s0006-291x(85)80051-6. [DOI] [PubMed] [Google Scholar]
  17. McLaughlin L. L., Wei Y. F., Stockmann P. T., Leahy K. M., Needleman P., Grassi J., Pradelles P. Development, validation and application of an enzyme immunoassay (EIA) of atriopeptin. Biochem Biophys Res Commun. 1987 Apr 14;144(1):469–476. doi: 10.1016/s0006-291x(87)80533-8. [DOI] [PubMed] [Google Scholar]
  18. Needleman P., Greenwald J. E. Atriopeptin: a cardiac hormone intimately involved in fluid, electrolyte, and blood-pressure homeostasis. N Engl J Med. 1986 Mar 27;314(13):828–834. doi: 10.1056/NEJM198603273141306. [DOI] [PubMed] [Google Scholar]
  19. Sasaki A., Kida O., Kato J., Nakamura S., Kodama K., Miyata A., Kangawa K., Matsuo H., Tanaka K. Effects of antiserum against alpha-rat atrial natriuretic peptide in anesthetized rats. Hypertension. 1987 Sep;10(3):308–312. doi: 10.1161/01.hyp.10.3.308. [DOI] [PubMed] [Google Scholar]
  20. Seymour A. A., Blaine E. H., Mazack E. K., Smith S. G., Stabilito I. I., Haley A. B., Napier M. A., Whinnery M. A., Nutt R. F. Renal and systemic effects of synthetic atrial natriuretic factor. Life Sci. 1985 Jan 7;36(1):33–44. doi: 10.1016/0024-3205(85)90283-8. [DOI] [PubMed] [Google Scholar]
  21. Stasch J. P., Hirth C., Kazda S., Wohlfeil S. The elevation of cyclic GMP as a response to acute hypervolemia is blocked by a monoclonal antibody directed against atrial natriuretic peptides. Eur J Pharmacol. 1986 Sep 23;129(1-2):165–168. doi: 10.1016/0014-2999(86)90348-1. [DOI] [PubMed] [Google Scholar]
  22. Sutherland E. W. Studies on the mechanism of hormone action. Science. 1972 Aug 4;177(4047):401–408. doi: 10.1126/science.177.4047.401. [DOI] [PubMed] [Google Scholar]
  23. Tremblay J., Gerzer R., Vinay P., Pang S. C., Béliveau R., Hamet P. The increase of cGMP by atrial natriuretic factor correlates with the distribution of particulate guanylate cyclase. FEBS Lett. 1985 Feb 11;181(1):17–22. doi: 10.1016/0014-5793(85)81105-4. [DOI] [PubMed] [Google Scholar]
  24. Trippodo N. C., Barbee R. W. Atrial natriuretic factor decreases whole-body capillary absorption in rats. Am J Physiol. 1987 May;252(5 Pt 2):R915–R920. doi: 10.1152/ajpregu.1987.252.5.R915. [DOI] [PubMed] [Google Scholar]
  25. Waldman S. A., Murad F. Cyclic GMP synthesis and function. Pharmacol Rev. 1987 Sep;39(3):163–196. [PubMed] [Google Scholar]
  26. Waldman S. A., Rapoport R. M., Murad F. Atrial natriuretic factor selectively activates particulate guanylate cyclase and elevates cyclic GMP in rat tissues. J Biol Chem. 1984 Dec 10;259(23):14332–14334. [PubMed] [Google Scholar]
  27. Wilkins M. R., Wood J. A., Adu D., Lote C. J., Kendall M. J., Michael J. Change in plasma immunoreactive atrial natriuretic peptide during sequential ultrafiltration and haemodialysis. Clin Sci (Lond) 1986 Aug;71(2):157–160. doi: 10.1042/cs0710157. [DOI] [PubMed] [Google Scholar]
  28. Willenbrock R. C., Tremblay J., Garcia R., Hamet P. Dissociation of natriuresis and diuresis and heterogeneity of the effector system of atrial natriuretic factor in rats. J Clin Invest. 1989 Feb;83(2):482–489. doi: 10.1172/JCI113907. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Winquist R. J., Faison E. P., Waldman S. A., Schwartz K., Murad F., Rapoport R. M. Atrial natriuretic factor elicits an endothelium-independent relaxation and activates particulate guanylate cyclase in vascular smooth muscle. Proc Natl Acad Sci U S A. 1984 Dec;81(23):7661–7664. doi: 10.1073/pnas.81.23.7661. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Wong K. R., Xie M. H., Shi L. B., Liu F. Y., Huang C. L., Gardner D. G., Cogan M. G. Urinary cGMP as biological marker of the renal activity of atrial natriuretic factor. Am J Physiol. 1988 Dec;255(6 Pt 2):F1220–F1224. doi: 10.1152/ajprenal.1988.255.6.F1220. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES