Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1990 Jul;86(1):107–112. doi: 10.1172/JCI114671

Neonatal plasminogen displays altered cell surface binding and activation kinetics. Correlation with increased glycosylation of the protein.

J M Edelberg 1, J J Enghild 1, S V Pizzo 1, M Gonzalez-Gronow 1
PMCID: PMC296696  PMID: 2365810

Abstract

Plasminogen isolated from 60 full-term newborns differs from adult plasminogen in carbohydrate composition, kinetic activation constants, and cell binding. Amino acid composition and amino-terminal sequence analysis data indicate that the plasminogens of neonates and adults have the same amino acid sequence. Like the adult, the neonate has two glycoforms, but both have significantly more mannose and sialic acid than the adult forms. The difference in the neonatal glycosylation is probably responsible for the altered migration observed by isoelectric focusing. Moreover, the difference in carbohydrate composition appears to be the basis of the decreased functional activity of the neonatal plasminogen. The kcat/Km ratios indicate that the overall activation rates of the two neonatal plasminogen glycoforms are lower compared with the adult glycoforms. In addition, neonatal plasminogen does not bind as well to cellular receptors compared with adult plasminogen. These studies suggest a basis for the decreased fibrinolytic activity observed in neonates.

Full text

PDF
107

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. AMBRUS C. M., WEINTRAUB D. H., DUNPHY D., DOWD J. E., PICKREN J. W., NISWANDER K. R., AMBRUS J. L. Studies on hyaline membrane disease. I. The fibrinolysin system in pathogenesis and therapy. Pediatrics. 1963 Jul;32:10–24. [PubMed] [Google Scholar]
  2. Ambrus C. M., Ambrus J. L., Choi T. S., Jung O., Mirand E. A., Bartfay-Szabo A. The fibrinolysin system and its relationship to disease in the newborn. Am J Pediatr Hematol Oncol. 1979 Fall;1(3):251–260. doi: 10.1097/00043426-197923000-00009. [DOI] [PubMed] [Google Scholar]
  3. Andrew M., Paes B., Milner R., Johnston M., Mitchell L., Tollefsen D. M., Powers P. Development of the human coagulation system in the full-term infant. Blood. 1987 Jul;70(1):165–172. [PubMed] [Google Scholar]
  4. Arneil G. C., MacDonald A. M., Sweet E. M. Renal venous thrombosis. Clin Nephrol. 1973 May-Jun;1(3):119–131. [PubMed] [Google Scholar]
  5. Beller F., Douglas G. W., Epstein M. D. The fibrinolytic enzyme system in the newborn. Am J Obstet Gynecol. 1966 Dec 1;96(7):977–984. doi: 10.1016/0002-9378(66)90443-1. [DOI] [PubMed] [Google Scholar]
  6. Brockway W. J., Castellino F. J. Measurement of the binding of antifibrinolytic amino acids to various plasminogens. Arch Biochem Biophys. 1972 Jul;151(1):194–199. doi: 10.1016/0003-9861(72)90488-2. [DOI] [PubMed] [Google Scholar]
  7. Cheng Y., Prusoff W. H. Relationship between the inhibition constant (K1) and the concentration of inhibitor which causes 50 per cent inhibition (I50) of an enzymatic reaction. Biochem Pharmacol. 1973 Dec 1;22(23):3099–3108. doi: 10.1016/0006-2952(73)90196-2. [DOI] [PubMed] [Google Scholar]
  8. Corrigan J. J., Jr, Jeter M., Allen H. D., Malone J. M. Aortic thrombosis in a neonate: failure of urokinase thrombolytic therapy. Am J Pediatr Hematol Oncol. 1982 Fall;4(3):243–247. [PubMed] [Google Scholar]
  9. Deutsch D. G., Mertz E. T. Plasminogen: purification from human plasma by affinity chromatography. Science. 1970 Dec 4;170(3962):1095–1096. doi: 10.1126/science.170.3962.1095. [DOI] [PubMed] [Google Scholar]
  10. Edelberg J. M., Gonzalez-Gronow M., Pizzo S. V. Lipoprotein(a) inhibition of plasminogen activation by tissue-type plasminogen activator. Thromb Res. 1990 Jan 1;57(1):155–162. doi: 10.1016/0049-3848(90)90203-o. [DOI] [PubMed] [Google Scholar]
  11. Ekelund H., Hedner U., Nilsson I. M. Fibrinolysis in newborns. Acta Paediatr Scand. 1970 Jan;59(1):33–43. doi: 10.1111/j.1651-2227.1970.tb15511.x. [DOI] [PubMed] [Google Scholar]
  12. Estelles A., Aznar J., Gilabert J., Parrilla J. J. Dysfunctional plasminogen in full-term newborn. Pediatr Res. 1980 Nov;14(11):1180–1185. doi: 10.1203/00006450-198011000-00006. [DOI] [PubMed] [Google Scholar]
  13. Francis J. L., Armstrong D. J. Sialic acid and enzymatic desialation of cord blood fibrinogen. Haemostasis. 1982;11(4):223–228. doi: 10.1159/000214667. [DOI] [PubMed] [Google Scholar]
  14. Galanakis D. K., Mosesson M. W. Evaluation of the role of in vivo proteolysis (fibrinogenolysis) in prolonging the thrombin time of human umbilical cord fibrinogen. Blood. 1976 Jul;48(1):109–118. [PubMed] [Google Scholar]
  15. Gonzalez-Gronow M., Edelberg J. M., Pizzo S. V. Further characterization of the cellular plasminogen binding site: evidence that plasminogen 2 and lipoprotein a compete for the same site. Biochemistry. 1989 Mar 21;28(6):2374–2377. doi: 10.1021/bi00432a005. [DOI] [PubMed] [Google Scholar]
  16. Gonzalez-Gronow M., Robbins K. C. In vitro biosynthesis of plasminogen in a cell-free system directed by mRNA fractions isolated from monkey liver. Biochemistry. 1984 Jan 17;23(2):190–196. doi: 10.1021/bi00297a003. [DOI] [PubMed] [Google Scholar]
  17. Hajjar K. A., Harpel P. C., Jaffe E. A., Nachman R. L. Binding of plasminogen to cultured human endothelial cells. J Biol Chem. 1986 Sep 5;261(25):11656–11662. [PubMed] [Google Scholar]
  18. Hammond K. S., Papermaster D. S. Fluorometric assay of sialic acid in the picomole range: a modification of the thiobarbituric acid assay. Anal Biochem. 1976 Aug;74(2):292–297. doi: 10.1016/0003-2697(76)90210-4. [DOI] [PubMed] [Google Scholar]
  19. Hayes M. L., Castellino F. J. Carbohydrate of the human plasminogen variants. II. Structure of the asparagine-linked oligosaccharide unit. J Biol Chem. 1979 Sep 25;254(18):8772–8776. [PubMed] [Google Scholar]
  20. Hayes M. L., Castellino F. J. Carbohydrate of the human plasminogen variants. III. Structure of the O-glycosidically linked oligosaccharide unit. J Biol Chem. 1979 Sep 25;254(18):8777–8780. [PubMed] [Google Scholar]
  21. Hayes M. L., Castellino J. F. Carbohydrate of the human plasminogen variants. I. Carbohydrate composition, glycopeptide isolation, and characterization. J Biol Chem. 1979 Sep 25;254(18):8768–8771. [PubMed] [Google Scholar]
  22. KAUFMANN H. J. Renal vein thrombosis. 1. Age incidence in infancy and childhood. 2. Sex incidence. 3. Incidence of unilateral and bilateral involvement. AMA J Dis Child. 1958 Apr;95(4):377–384. [PubMed] [Google Scholar]
  23. Kornfeld R., Kornfeld S. Comparative aspects of glycoprotein structure. Annu Rev Biochem. 1976;45:217–237. doi: 10.1146/annurev.bi.45.070176.001245. [DOI] [PubMed] [Google Scholar]
  24. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  25. Markwell M. A. A new solid-state reagent to iodinate proteins. I. Conditions for the efficient labeling of antiserum. Anal Biochem. 1982 Sep 15;125(2):427–432. doi: 10.1016/0003-2697(82)90025-2. [DOI] [PubMed] [Google Scholar]
  26. Martinez J., MacDonald K. A., Palascak J. E. The role of sialic acid in the dysfibrinogenemia associated with liver disease: distribution of sialic acid on the constituent chains. Blood. 1983 Jun;61(6):1196–1202. [PubMed] [Google Scholar]
  27. Meltzer N. M., Tous G. I., Gruber S., Stein S. Gas-phase hydrolysis of proteins and peptides. Anal Biochem. 1987 Feb 1;160(2):356–361. doi: 10.1016/0003-2697(87)90060-1. [DOI] [PubMed] [Google Scholar]
  28. Miles L. A., Plow E. F. Receptor mediated binding of the fibrinolytic components, plasminogen and urokinase, to peripheral blood cells. Thromb Haemost. 1987 Oct 28;58(3):936–942. [PubMed] [Google Scholar]
  29. Nieuwenhuizen W., Verheijen J. H., Vermond A., Chang G. T. Plasminogen activation by tissue activator is accelerated in the presence of fibrin(ogen) cyanogen bromide fragment FCB-2. Biochim Biophys Acta. 1983 Feb 22;755(3):531–533. doi: 10.1016/0304-4165(83)90261-1. [DOI] [PubMed] [Google Scholar]
  30. PHILLIPS L. L., SKRODELIS V. A comparison of the fibrinolytic enzyme system in maternal and umbilical-cord blood. Pediatrics. 1958 Oct;22(4 Pt 1):715–726. [PubMed] [Google Scholar]
  31. Parekh R. B., Dwek R. A., Rudd P. M., Thomas J. R., Rademacher T. W., Warren T., Wun T. C., Hebert B., Reitz B., Palmier M. N-glycosylation and in vitro enzymatic activity of human recombinant tissue plasminogen activator expressed in Chinese hamster ovary cells and a murine cell line. Biochemistry. 1989 Sep 19;28(19):7670–7679. doi: 10.1021/bi00445a023. [DOI] [PubMed] [Google Scholar]
  32. Peterson C. B., Blackburn M. N. Isolation and characterization of an antithrombin III variant with reduced carbohydrate content and enhanced heparin binding. J Biol Chem. 1985 Jan 10;260(1):610–615. [PubMed] [Google Scholar]
  33. Plow E. F., Freaney D. E., Plescia J., Miles L. A. The plasminogen system and cell surfaces: evidence for plasminogen and urokinase receptors on the same cell type. J Cell Biol. 1986 Dec;103(6 Pt 1):2411–2420. doi: 10.1083/jcb.103.6.2411. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Rademacher T. W., Parekh R. B., Dwek R. A. Glycobiology. Annu Rev Biochem. 1988;57:785–838. doi: 10.1146/annurev.bi.57.070188.004033. [DOI] [PubMed] [Google Scholar]
  35. Robbins K. C., Summaria L. Isoelectric focusing of human plasminogen, plasmin, and derived heavy (A) and light (B) chains. Ann N Y Acad Sci. 1973 Jun 15;209:397–404. doi: 10.1111/j.1749-6632.1973.tb47543.x. [DOI] [PubMed] [Google Scholar]
  36. Schmidt B., Zipursky A. Thrombotic disease in newborn infants. Clin Perinatol. 1984 Jun;11(2):461–488. [PubMed] [Google Scholar]
  37. Siefring G. E., Jr, Castellino F. J. The role of sialic acid in the determination of distinct properties of the isozymes of rabbit plasminogen. J Biol Chem. 1974 Dec 25;249(24):7742–7746. [PubMed] [Google Scholar]
  38. Suarez C. R., Walenga J., Mangogna L. C., Fareed J. Neonatal and maternal fibrinolysis: activation at time of birth. Am J Hematol. 1985 Aug;19(4):365–372. doi: 10.1002/ajh.2830190407. [DOI] [PubMed] [Google Scholar]
  39. Summaria L., Arzadon L., Bernabe P., Robbins K. C. Studies on the isolation of the multiple molecular forms of human plasminogen and plasmin by isoelectric focusing methods. J Biol Chem. 1972 Jul 25;247(14):4691–4702. [PubMed] [Google Scholar]
  40. Summaria L. Comparison of human normal, full-term, fetal and adult plasminogen by physical and chemical analyses. Haemostasis. 1989;19(5):266–273. doi: 10.1159/000215986. [DOI] [PubMed] [Google Scholar]
  41. Tarentino A. L., Gómez C. M., Plummer T. H., Jr Deglycosylation of asparagine-linked glycans by peptide:N-glycosidase F. Biochemistry. 1985 Aug 13;24(17):4665–4671. doi: 10.1021/bi00338a028. [DOI] [PubMed] [Google Scholar]
  42. Wallén P., Wiman B. Characterization of human plasminogen. II. Separation and partial characterization of different molecular forms of human plasminogen. Biochim Biophys Acta. 1972 Jan 26;257(1):122–134. doi: 10.1016/0005-2795(72)90261-9. [DOI] [PubMed] [Google Scholar]
  43. Wittwer A. J., Howard S. C., Carr L. S., Harakas N. K., Feder J., Parekh R. B., Rudd P. M., Dwek R. A., Rademacher T. W. Effects of N-glycosylation on in vitro activity of Bowes melanoma and human colon fibroblast derived tissue plasminogen activator. Biochemistry. 1989 Sep 19;28(19):7662–7669. doi: 10.1021/bi00445a022. [DOI] [PubMed] [Google Scholar]
  44. Zhu B. C., Laine R. A. Polylactosamine glycosylation on human fetal placental fibronectin weakens the binding affinity of fibronectin to gelatin. J Biol Chem. 1985 Apr 10;260(7):4041–4045. [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES