Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1990 Jul;86(1):196–202. doi: 10.1172/JCI114684

Impaired metabolic function and signaling defects in phagocytic cells in glycogen storage disease type 1b.

L Kilpatrick 1, B Z Garty 1, K F Lundquist 1, K Hunter 1, C A Stanley 1, L Baker 1, S D Douglas 1, H M Korchak 1
PMCID: PMC296707  PMID: 2164043

Abstract

Patients with glycogen storage disease (GSD) type 1b (1b), in contrast to patients with GSD type 1a (1a), are susceptible to recurrent bacterial infections suggesting an impairment in their immune system. In this study, phagocytic cell (neutrophil and monocyte) respiratory burst activity, as measured by superoxide anion generation, oxygen consumption, and hexose monophosphate shunt activity, was markedly reduced in both neutrophils and monocytes from GSD 1b patients as compared with either GSD 1a patients or healthy adult control cells. Degranulation, unlike respiratory burst activity, was not significantly different in neutrophils from GSD 1b patients as compared with controls. Both neutrophils and monocytes from GSD 1b patients showed decreased ability to elevate cytosolic calcium in response to the chemotactic peptide f-Met-Leu-Phe. In addition, calcium mobilization in response to ionomycin was also attenuated suggesting decreased calcium stores. Thus, reduced phagocytic cell function in GSD 1b is associated with diminished calcium mobilization and defective calcium stores. Defective calcium signaling is associated with a selective defect in respiratory burst activity but not degranulation.

Full text

PDF
196

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson D. C., Mace M. L., Brinkley B. R., Martin R. R., Smith C. W. Recurrent infection in glycogenosis type Ib: abnormal neutrophil motility related to impaired redistribution of adhesion sites. J Infect Dis. 1981 Mar;143(3):447–459. doi: 10.1093/infdis/143.3.447. [DOI] [PubMed] [Google Scholar]
  2. Arion W. J., Lange A. J., Walls H. E., Ballas L. M. Evidence for the participation of independent translocation for phosphate and glucose 6-phosphate in the microsomal glucose-6-phosphatase system. Interactions of the system with orthophosphate, inorganic pyrophosphate, and carbamyl phosphate. J Biol Chem. 1980 Nov 10;255(21):10396–10406. [PubMed] [Google Scholar]
  3. Bartram C. R., Przyrembel H., Wendel U., Bremer H. J., Schaub J., Haas J. R. Glycogenosis type Ib complicated by severe granulocytopenia resembling inherited neutropenia. Eur J Pediatr. 1981 Sep;137(1):81–84. doi: 10.1007/BF00441175. [DOI] [PubMed] [Google Scholar]
  4. Bashan N., Hagai Y., Potashnik R., Moses S. W. Impaired carbohydrate metabolism of polymorphonuclear leukocytes in glycogen storage disease Ib. J Clin Invest. 1988 May;81(5):1317–1322. doi: 10.1172/JCI113457. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Beaudet A. L., Anderson D. C., Michels V. V., Arion W. J., Lange A. J. Neutropenia and impaired neutrophil migration in type IB glycogen storage disease. J Pediatr. 1980 Dec;97(6):906–910. doi: 10.1016/s0022-3476(80)80418-5. [DOI] [PubMed] [Google Scholar]
  6. Benedetti A., Fulceri R., Romani A., Comporti M. MgATP-dependent glucose 6-phosphate-stimulated Ca2+ accumulation in liver microsomal fractions. Effects of inositol 1,4,5-trisphosphate and GTP. J Biol Chem. 1988 Mar 5;263(7):3466–3473. [PubMed] [Google Scholar]
  7. Brittinger G., Hirschhorn R., Douglas S. D., Weissmann G. Studies on lysosomes. XI. Characterization of a hydrolase-rich fraction from human lymphocytes. J Cell Biol. 1968 May;37(2):394–411. doi: 10.1083/jcb.37.2.394. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. CORI G. T., CORI C. F. Glucose-6-phosphatase of the liver in glycogen storage disease. J Biol Chem. 1952 Dec;199(2):661–667. [PubMed] [Google Scholar]
  9. Countaway J. L., Waddell I. D., Burchell A., Arion W. J. The phosphohydrolase component of the hepatic microsomal glucose-6-phosphatase system is a 36.5-kilodalton polypeptide. J Biol Chem. 1988 Feb 25;263(6):2673–2678. [PubMed] [Google Scholar]
  10. DeChatelet L. R., Lees C. J., Walsh C. E., Long G. D., Shirley P. S. Comparison of the calcium ionophore and phorbol myristate acetate on the initiation of the respiratory burst in human neutrophils. Infect Immun. 1982 Dec;38(3):969–974. doi: 10.1128/iai.38.3.969-974.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Di Rocco M., Borrone C., Dallegri F., Frumento G., Patrone F. Neutropenia and impaired neutrophil function in glycogenosis type Ib. J Inherit Metab Dis. 1984;7(4):151–154. doi: 10.1007/BF01805597. [DOI] [PubMed] [Google Scholar]
  12. Di Virgilio F., Lew D. P., Pozzan T. Protein kinase C activation of physiological processes in human neutrophils at vanishingly small cytosolic Ca2+ levels. Nature. 1984 Aug 23;310(5979):691–693. doi: 10.1038/310691a0. [DOI] [PubMed] [Google Scholar]
  13. Gahr M., Heyne K. Impaired metabolic function of polymorphonuclear leukocytes in glycogen storage disease Ib. Eur J Pediatr. 1983 Sep;140(4):329–330. doi: 10.1007/BF00442674. [DOI] [PubMed] [Google Scholar]
  14. Grynkiewicz G., Poenie M., Tsien R. Y. A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem. 1985 Mar 25;260(6):3440–3450. [PubMed] [Google Scholar]
  15. Hassan N. F., Campbell D. E., Douglas S. D. Purification of human monocytes on gelatin-coated surfaces. J Immunol Methods. 1986 Dec 24;95(2):273–276. doi: 10.1016/0022-1759(86)90415-1. [DOI] [PubMed] [Google Scholar]
  16. Heyne K., Gahr M. Differentiation between glycogenosis types Ia and Ib by measurement of extra respiration during phagocytosis by polymorphonuclear leukocytes? Eur J Pediatr. 1980;133(1):69–69. doi: 10.1007/BF00444759. [DOI] [PubMed] [Google Scholar]
  17. Horn W., Karnovsky M. L. Features of the translocation of protein kinase C in neutrophils stimulated with the chemotactic peptide f-Met-Leu-Phe. Biochem Biophys Res Commun. 1986 Sep 30;139(3):1169–1175. doi: 10.1016/s0006-291x(86)80300-x. [DOI] [PubMed] [Google Scholar]
  18. Korchak H. M., Vienne K., Rutherford L. E., Wilkenfeld C., Finkelstein M. C., Weissmann G. Stimulus response coupling in the human neutrophil. II. Temporal analysis of changes in cytosolic calcium and calcium efflux. J Biol Chem. 1984 Apr 10;259(7):4076–4082. [PubMed] [Google Scholar]
  19. Korchak H. M., Vosshall L. B., Haines K. A., Wilkenfeld C., Lundquist K. F., Weissmann G. Activation of the human neutrophil by calcium-mobilizing ligands. II. Correlation of calcium, diacyl glycerol, and phosphatidic acid generation with superoxide anion generation. J Biol Chem. 1988 Aug 15;263(23):11098–11105. [PubMed] [Google Scholar]
  20. Korchak H. M., Vosshall L. B., Zagon G., Ljubich P., Rich A. M., Weissmann G. Activation of the neutrophil by calcium-mobilizing ligands. I. A chemotactic peptide and the lectin concanavalin A stimulate superoxide anion generation but elicit different calcium movements and phosphoinositide remodeling. J Biol Chem. 1988 Aug 15;263(23):11090–11097. [PubMed] [Google Scholar]
  21. Korchak H. M., Weissmann G. Changes in membrane potential of human granulocytes antecede the metabolic responses to surface stimulation. Proc Natl Acad Sci U S A. 1978 Aug;75(8):3818–3822. doi: 10.1073/pnas.75.8.3818. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Koven N. L., Clark M. M., Cody C. S., Stanley C. A., Baker L., Douglas S. D. Impaired chemotaxis and neutrophil (polymorphonuclear leukocyte) function in glycogenosis type IB. Pediatr Res. 1986 May;20(5):438–442. doi: 10.1203/00006450-198605000-00012. [DOI] [PubMed] [Google Scholar]
  23. Lange A. J., Arion W. J., Beaudet A. L. Type Ib glycogen storage disease is caused by a defect in the glucose-6-phosphate translocase of the microsomal glucose-6-phosphatase system. J Biol Chem. 1980 Sep 25;255(18):8381–8384. [PubMed] [Google Scholar]
  24. Lew P. D., Wollheim C. B., Waldvogel F. A., Pozzan T. Modulation of cytosolic-free calcium transients by changes in intracellular calcium-buffering capacity: correlation with exocytosis and O2-production in human neutrophils. J Cell Biol. 1984 Oct;99(4 Pt 1):1212–1220. doi: 10.1083/jcb.99.4.1212. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Lew P. D., Wollheim C., Seger R. A., Pozzan T. Cytosolic free calcium changes induced by chemotactic peptide in neutrophils from patients with chronic granulomatous disease. Blood. 1984 Jan;63(1):231–233. [PubMed] [Google Scholar]
  26. Narisawa K., Igarashi Y., Otomo H., Tada K. A new variant of glycogen storage disease type I probably due to a defect in the glucose-6-phosphate transport system. Biochem Biophys Res Commun. 1978 Aug 29;83(4):1360–1364. doi: 10.1016/0006-291x(78)91371-2. [DOI] [PubMed] [Google Scholar]
  27. Narisawa K., Ishizawa S., Okumura H., Tada K., Kuzuya T. Neutrophil metabolic dysfunction in genetically heterogeneous patients with glycogen storage disease type 1b. J Inherit Metab Dis. 1986;9(3):297–300. doi: 10.1007/BF01799669. [DOI] [PubMed] [Google Scholar]
  28. Newburger P. E., Pagano J. S., Greenberger J. S., Karpas A., Cohen H. J. Dissociation of opsonized particle phagocytosis and respiratory burst activity in an Epstein-Barr virus-infected myeloid cell line. J Cell Biol. 1980 Jun;85(3):549–557. doi: 10.1083/jcb.85.3.549. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Nordlie R. C., Sukalski K. A., Muñoz J. M., Baldwin J. J. Type Ic, a novel glycogenosis. Underlying mechanism. J Biol Chem. 1983 Aug 25;258(16):9739–9744. [PubMed] [Google Scholar]
  30. Pike M. C., Jakoi L., McPhail L. C., Snyderman R. Chemoattractant-mediated stimulation of the respiratory burst in human polymorphonuclear leukocytes may require appearance of protein kinase activity in the cells' particulate fraction. Blood. 1986 Apr;67(4):909–913. [PubMed] [Google Scholar]
  31. Quie P. G., White J. G., Holmes B., Good R. A. In vitro bactericidal capacity of human polymorphonuclear leukocytes: diminished activity in chronic granulomatous disease of childhood. J Clin Invest. 1967 Apr;46(4):668–679. doi: 10.1172/JCI105568. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Schaub J., Heyne K. Glycogen storage disease type Ib. Eur J Pediatr. 1983 Sep;140(4):283–288. doi: 10.1007/BF00442664. [DOI] [PubMed] [Google Scholar]
  33. Seger R., Steinmann B., Tiefenauer L., Matsunaga T., Gitzelmann R. Short communication. Glycogenosis Ib: neutrophil microbicidal defects due to impaired hexose monophosphate shunt. Pediatr Res. 1984 Mar;18(3):297–299. doi: 10.1203/00006450-198403000-00019. [DOI] [PubMed] [Google Scholar]
  34. Senior B., Loridan L. Studies of liver glycogenoses, with particular reference to the metabolism of intravenously administered glycerol. N Engl J Med. 1968 Oct 31;279(18):958–965. doi: 10.1056/NEJM196810312791802. [DOI] [PubMed] [Google Scholar]
  35. Sha'afi R. I., White J. R., Molski T. F., Shefcyk J., Volpi M., Naccache P. H., Feinstein M. B. Phorbol 12-myristate 13-acetate activates rabbit neutrophils without an apparent rise in the level of intracellular free calcium. Biochem Biophys Res Commun. 1983 Jul 29;114(2):638–645. doi: 10.1016/0006-291x(83)90828-8. [DOI] [PubMed] [Google Scholar]
  36. Slonczewski J. L., Wilde M. W., Zigmond S. H. Phosphorylase a activity as an indicator of neutrophil activation by chemotactic peptide. J Cell Biol. 1985 Oct;101(4):1191–1197. doi: 10.1083/jcb.101.4.1191. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Stossel T. P., Murad F., Mason R. J., Vaughan M. Regulation of glycogen metabolism in polymorphonuclear leukocytes. J Biol Chem. 1970 Nov 25;245(22):6228–6234. [PubMed] [Google Scholar]
  38. Ueno N., Tomita M., Ariga T., Ohkawa M., Nagano S., Takahashi Y., Arashima S., Matsumoto S. Impaired monocyte function in glycogen storage disease type Ib. Eur J Pediatr. 1986 Sep;145(4):312–314. doi: 10.1007/BF00439409. [DOI] [PubMed] [Google Scholar]
  39. Weiss A., Imboden J., Hardy K., Manger B., Terhorst C., Stobo J. The role of the T3/antigen receptor complex in T-cell activation. Annu Rev Immunol. 1986;4:593–619. doi: 10.1146/annurev.iy.04.040186.003113. [DOI] [PubMed] [Google Scholar]
  40. Weissmann G., Smolen J. E., Korchak H. M. Release of inflammatory mediators from stimulated neutrophils. N Engl J Med. 1980 Jul 3;303(1):27–34. doi: 10.1056/NEJM198007033030109. [DOI] [PubMed] [Google Scholar]
  41. Wolf B. A., Colca J. R., Comens P. G., Turk J., McDaniel M. L. Glucose 6-phosphate regulates Ca2+ steady state in endoplasmic reticulum of islets. A possible link in glucose-induced insulin secretion. J Biol Chem. 1986 Dec 15;261(35):16284–16287. [PubMed] [Google Scholar]
  42. Wolf M., Cuatrecasas P., Sahyoun N. Interaction of protein kinase C with membranes is regulated by Ca2+, phorbol esters, and ATP. J Biol Chem. 1985 Dec 15;260(29):15718–15722. [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES