Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1990 Jul;86(1):273–278. doi: 10.1172/JCI114695

Analysis of the role of antibody-dependent cellular cytotoxic antibody activity in murine neonatal herpes simplex virus infection with antibodies to synthetic peptides of glycoprotein D and monoclonal antibodies to glycoprotein B.

S Kohl 1, N C Strynadka 1, R S Hodges 1, L Pereira 1
PMCID: PMC296717  PMID: 2164044

Abstract

The role of antibody in neonatal herpes simplex virus (HSV) infection remains controversial. A battery of well-characterized monoclonal antibodies to HSV glycoprotein B (gB), and polyclonal antibodies against synthetic peptides of predicted epitopes of HSV glycoprotein D (gD) were used to determine in vitro functional activity and association with protection against lethal infection in a murine model of neonatal HSV disease. Antiviral neutralization activity of HSV was not associated with antibody-dependent cellular cytotoxicity (ADCC) activity to HSV-infected cells in vitro. In a model of high dose challenge (10(4) PFU), protection was not afforded by any antibody alone, but was by antibody plus human mononuclear cells, and highly associated with ADCC functional activity (P less than 0.001). In a low dose challenge model, neutralizing activity of antibody alone was associated with protection in vivo (P less than 0.001). Of the nine neutralizing epitopes of gD in vitro, eight were predicted surface regions. Four of the five epitopic sites of gD (2-21, 267-276, 288-297, and 303-312) that were determined to be important targets of ADCC and in vivo protection were also predicted to be surface regions. The only exception was the antiserum to region 52-61 which was predicted to be buried and also showed these activities. ADCC as well as neutralizing antibody activity are important in protection against neonatal HSV infection.

Full text

PDF
273

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Balachandran N., Bacchetti S., Rawls W. E. Protection against lethal challenge of BALB/c mice by passive transfer of monoclonal antibodies to five glycoproteins of herpes simplex virus type 2. Infect Immun. 1982 Sep;37(3):1132–1137. doi: 10.1128/iai.37.3.1132-1137.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Baron S., Worthington M. G., Williams J., Gaines J. W. Postexposure serum prophylaxis of neonatal herpes simplex virus infection of mice. Nature. 1976 Jun 10;261(5560):505–506. doi: 10.1038/261505a0. [DOI] [PubMed] [Google Scholar]
  3. Chapsal J. M., Pereira L. Characterization of epitopes on native and denatured forms of herpes simplex virus glycoprotein B. Virology. 1988 Jun;164(2):427–434. doi: 10.1016/0042-6822(88)90556-9. [DOI] [PubMed] [Google Scholar]
  4. Cho C. T., Feng K. K. Interaction of adenine arabinoside and host defense factors in experimental infections due to Herpesvirus hominis. J Infect Dis. 1977 Mar;135(3):468–472. doi: 10.1093/infdis/135.3.468. [DOI] [PubMed] [Google Scholar]
  5. Chow M., Yabrov R., Bittle J., Hogle J., Baltimore D. Synthetic peptides from four separate regions of the poliovirus type 1 capsid protein VP1 induce neutralizing antibodies. Proc Natl Acad Sci U S A. 1985 Feb;82(3):910–914. doi: 10.1073/pnas.82.3.910. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Cohen G. H., Dietzschold B., Ponce de Leon M., Long D., Golub E., Varrichio A., Pereira L., Eisenberg R. J. Localization and synthesis of an antigenic determinant of herpes simplex virus glycoprotein D that stimulates the production of neutralizing antibody. J Virol. 1984 Jan;49(1):102–108. doi: 10.1128/jvi.49.1.102-108.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. DeFreitas E. C., Dietzschold B., Koprowski H. Human T-lymphocyte response in vitro to synthetic peptides of herpes simplex virus glycoprotein D. Proc Natl Acad Sci U S A. 1985 May;82(10):3425–3429. doi: 10.1073/pnas.82.10.3425. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Dietzschold B., Eisenberg R. J., Ponce de Leon M., Golub E., Hudecz F., Varrichio A., Cohen G. H. Fine structure analysis of type-specific and type-common antigenic sites of herpes simplex virus glycoprotein D. J Virol. 1984 Nov;52(2):431–435. doi: 10.1128/jvi.52.2.431-435.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Dix R. D., Pereira L., Baringer J. R. Use of monoclonal antibody directed against herpes simplex virus glycoproteins to protect mice against acute virus-induced neurological disease. Infect Immun. 1981 Oct;34(1):192–199. doi: 10.1128/iai.34.1.192-199.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Dyson H. J., Lerner R. A., Wright P. E. The physical basis for induction of protein-reactive antipeptide antibodies. Annu Rev Biophys Biophys Chem. 1988;17:305–324. doi: 10.1146/annurev.bb.17.060188.001513. [DOI] [PubMed] [Google Scholar]
  11. Eisenberg R. J., Long D., Ponce de Leon M., Matthews J. T., Spear P. G., Gibson M. G., Lasky L. A., Berman P., Golub E., Cohen G. H. Localization of epitopes of herpes simplex virus type 1 glycoprotein D. J Virol. 1985 Feb;53(2):634–644. doi: 10.1128/jvi.53.2.634-644.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Georgiades J. A., Montgomery J., Hughes T. K., Jensen D., Baron S. Determinants of protection by human immune globulin against experimental herpes neonatorum. Proc Soc Exp Biol Med. 1982 Jul;170(3):291–297. doi: 10.3181/00379727-170-41433. [DOI] [PubMed] [Google Scholar]
  13. Getzoff E. D., Geysen H. M., Rodda S. J., Alexander H., Tainer J. A., Lerner R. A. Mechanisms of antibody binding to a protein. Science. 1987 Mar 6;235(4793):1191–1196. doi: 10.1126/science.3823879. [DOI] [PubMed] [Google Scholar]
  14. Kino Y., Eto T., Ohtomo N., Hayashi Y., Yamamoto M., Mori R. Passive immunization of mice with monoclonal antibodies to glycoprotein gB of herpes simplex virus. Microbiol Immunol. 1985;29(2):143–149. doi: 10.1111/j.1348-0421.1985.tb00812.x. [DOI] [PubMed] [Google Scholar]
  15. Kohl S., Bigelow R. H., Loo L. S. Ontogeny of protection of neonatal mice from lethal herpes simplex virus infection by human leukocytes, antiviral antibody, and recombinant alpha-interferon. Pediatr Res. 1984 Nov;18(11):1164–1167. doi: 10.1203/00006450-198411000-00022. [DOI] [PubMed] [Google Scholar]
  16. Kohl S., Cox P. A., Loo L. S. Defective production of antibody to herpes simplex virus in neonates: defective production of T helper lymphokine and induction of suppression. J Infect Dis. 1987 Jun;155(6):1179–1187. doi: 10.1093/infdis/155.6.1179. [DOI] [PubMed] [Google Scholar]
  17. Kohl S., Loo L. S., Drath D. B., Cox P. Interleukin-2 protects neonatal mice from lethal herpes simplex virus infection: a macrophage-mediated, gamma interferon-induced mechanism. J Infect Dis. 1989 Feb;159(2):239–247. doi: 10.1093/infdis/159.2.239. [DOI] [PubMed] [Google Scholar]
  18. Kohl S., Loo L. S., Gonik B. Analysis in human neonates of defective antibody-dependent cellular cytotoxicity and natural killer cytotoxicity to herpes simplex virus-infected cells. J Infect Dis. 1984 Jul;150(1):14–19. doi: 10.1093/infdis/150.1.14. [DOI] [PubMed] [Google Scholar]
  19. Kohl S., Loo L. S., Greenberg S. B. Protection of newborn mice from a lethal herpes simplex virus infection by human interferon, antibody, and leukocytes. J Immunol. 1982 Mar;128(3):1107–1111. [PubMed] [Google Scholar]
  20. Kohl S., Loo L. S. Ontogeny of murine cellular cytotoxicity to herpes simplex virus-infected cells. Infect Immun. 1980 Dec;30(3):847–850. doi: 10.1128/iai.30.3.847-850.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Kohl S., Loo L. S., Pickering L. K. Protection of neonatal mice against herpes simplex viral infection by human antibody and leukocytes from adult, but not neonatal humans. J Immunol. 1981 Oct;127(4):1273–1275. [PubMed] [Google Scholar]
  22. Kohl S., Loo L. S. Protection of neonatal mice against herpes simplex virus infection: probable in vivo antibody-dependent cellular cytotoxicity. J Immunol. 1982 Jul;129(1):370–376. [PubMed] [Google Scholar]
  23. Kohl S., Loo L. S., Schmalstieg F. S., Anderson D. C. The genetic deficiency of leukocyte surface glycoprotein Mac-1, LFA-1, p150,95 in humans is associated with defective antibody-dependent cellular cytotoxicity in vitro and defective protection against herpes simplex virus infection in vivo. J Immunol. 1986 Sep 1;137(5):1688–1694. [PubMed] [Google Scholar]
  24. Kohl S., Loo L. S. The relative role of transplacental and milk immune transfer in protection against lethal neonatal herpes simplex virus infection in mice. J Infect Dis. 1984 Jan;149(1):38–42. doi: 10.1093/infdis/149.1.38. [DOI] [PubMed] [Google Scholar]
  25. Kohl S. Protection against murine neonatal herpes simplex virus infection by lymphokine-treated human leukocytes. J Immunol. 1990 Jan 1;144(1):307–312. [PubMed] [Google Scholar]
  26. Kohl S., Starr S. E., oleske J. M., Shore S. L., Ashman R. B., Nahmias A. J. Human monocyte-macrophage-mediated antibody-dependent cytotoxicity to herpes simplex virus-infected cells. J Immunol. 1977 Mar;118(3):729–735. [PubMed] [Google Scholar]
  27. Kohl S. The neonatal human's immune response to herpes simplex virus infection: a critical review. Pediatr Infect Dis J. 1989 Feb;8(2):67–74. [PubMed] [Google Scholar]
  28. Kohl S., West M. S., Prober C. G., Sullender W. M., Loo L. S., Arvin A. M. Neonatal antibody-dependent cellular cytotoxic antibody levels are associated with the clinical presentation of neonatal herpes simplex virus infection. J Infect Dis. 1989 Nov;160(5):770–776. doi: 10.1093/infdis/160.5.770. [DOI] [PubMed] [Google Scholar]
  29. Kümel G., Kaerner H. C., Levine M., Schröder C. H., Glorioso J. C. Passive immune protection by herpes simplex virus-specific monoclonal antibodies and monoclonal antibody-resistant mutants altered in pathogenicity. J Virol. 1985 Dec;56(3):930–937. doi: 10.1128/jvi.56.3.930-937.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Luyet F., Samra D., Soneji A., Marks M. I. Passive immunization in experimental Herpesvirus hominis infection of newborn mice. Infect Immun. 1975 Dec;12(6):1258–1261. doi: 10.1128/iai.12.6.1258-1261.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Mariuzza R. A., Phillips S. E., Poljak R. J. The structural basis of antigen-antibody recognition. Annu Rev Biophys Biophys Chem. 1987;16:139–159. doi: 10.1146/annurev.bb.16.060187.001035. [DOI] [PubMed] [Google Scholar]
  32. Metcalf J. F., Chatterjee S., Koga J., Whitley R. J. Protection against herpetic ocular disease by immunotherapy with monoclonal antibodies to herpes simplex virus glycoproteins. Intervirology. 1988;29(1):39–49. doi: 10.1159/000150027. [DOI] [PubMed] [Google Scholar]
  33. Norrild B., Shore S. L., Cromeans T. L., Nahmias A. J. Participation of three major glycoprotein antigens of herpes simplex virus type 1 early in the infectious cycle as determined by antibody-dependent cell-mediated cytotoxicity. Infect Immun. 1980 Apr;28(1):38–44. doi: 10.1128/iai.28.1.38-44.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Norrild B., Shore S. L., Nahmias A. J. Herpes simplex virus glycoproteins: participation of individual herpes simplex virus type 1 glycoprotein antigens in immunocytolysis and their correlation with previously identified glycopolypeptides. J Virol. 1979 Dec;32(3):741–748. doi: 10.1128/jvi.32.3.741-748.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Oleske J. M., Ashman R. B., Kohl S., Shore S. L., Starr S. E., Wood P., Nahmias A. J. Human polymorphonuclear leucocytes as mediators of antibody-dependent cellular cytotoxicity to herpes simplex virus-infected cells. Clin Exp Immunol. 1977 Mar;27(3):446–453. [PMC free article] [PubMed] [Google Scholar]
  36. Pereira L., Dondero D. V., Gallo D., Devlin V., Woodie J. D. Serological analysis of herpes simplex virus types 1 and 2 with monoclonal antibodies. Infect Immun. 1982 Jan;35(1):363–367. doi: 10.1128/iai.35.1.363-367.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Prober C. G., Sullender W. M., Yasukawa L. L., Au D. S., Yeager A. S., Arvin A. M. Low risk of herpes simplex virus infections in neonates exposed to the virus at the time of vaginal delivery to mothers with recurrent genital herpes simplex virus infections. N Engl J Med. 1987 Jan 29;316(5):240–244. doi: 10.1056/NEJM198701293160503. [DOI] [PubMed] [Google Scholar]
  38. Rector J. T., Lausch R. N., Oakes J. E. Identification of infected cell-specific monoclonal antibodies and their role in host resistance to ocular herpes simplex virus type 1 infection. J Gen Virol. 1984 Mar;65(Pt 3):657–661. doi: 10.1099/0022-1317-65-3-657. [DOI] [PubMed] [Google Scholar]
  39. Rector J. T., Lausch R. N., Oakes J. E. Use of monoclonal antibodies for analysis of antibody-dependent immunity to ocular herpes simplex virus type 1 infection. Infect Immun. 1982 Oct;38(1):168–174. doi: 10.1128/iai.38.1.168-174.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Showalter S. D., Zweig M., Hampar B. Monoclonal antibodies to herpes simplex virus type 1 proteins, including the immediate-early protein ICP 4. Infect Immun. 1981 Dec;34(3):684–692. doi: 10.1128/iai.34.3.684-692.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Strulovitch C., Marks M. I., Soneji A., Goldberg S. Immunotherapy and drugs in neonatal disseminated herpes simplex virus type 2 infections: a mouse model. J Antimicrob Chemother. 1979 Jul;5(4):437–446. doi: 10.1093/jac/5.4.437. [DOI] [PubMed] [Google Scholar]
  42. Strynadka N. C., Redmond M. J., Parker J. M., Scraba D. G., Hodges R. S. Use of synthetic peptides to map the antigenic determinants of glycoprotein D of herpes simplex virus. J Virol. 1988 Sep;62(9):3474–3483. doi: 10.1128/jvi.62.9.3474-3483.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Sullender W. M., Miller J. L., Yasukawa L. L., Bradley J. S., Black S. B., Yeager A. S., Arvin A. M. Humoral and cell-mediated immunity in neonates with herpes simplex virus infection. J Infect Dis. 1987 Jan;155(1):28–37. doi: 10.1093/infdis/155.1.28. [DOI] [PubMed] [Google Scholar]
  44. Sullender W. M., Yasukawa L. L., Schwartz M., Pereira L., Hensleigh P. A., Prober C. G., Arvin A. M. Type-specific antibodies to herpes simplex virus type 2 (HSV-2) glycoprotein G in pregnant women, infants exposed to maternal HSV-2 infection at delivery, and infants with neonatal herpes. J Infect Dis. 1988 Jan;157(1):164–171. doi: 10.1093/infdis/157.1.164. [DOI] [PubMed] [Google Scholar]
  45. Sullivan-Bolyai J., Hull H. F., Wilson C., Corey L. Neonatal herpes simplex virus infection in King County, Washington. Increasing incidence and epidemiologic correlates. JAMA. 1983 Dec 9;250(22):3059–3062. [PubMed] [Google Scholar]
  46. Weijer W. J., Drijfhout J. W., Geerligs H. J., Bloemhoff W., Feijlbrief M., Bos C. A., Hoogerhout P., Kerling K. E., Popken-Boer T., Slopsema K. Antibodies against synthetic peptides of herpes simplex virus type 1 glycoprotein D and their capability to neutralize viral infectivity in vitro. J Virol. 1988 Feb;62(2):501–510. doi: 10.1128/jvi.62.2.501-510.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Whitley R. J., Corey L., Arvin A., Lakeman F. D., Sumaya C. V., Wright P. F., Dunkle L. M., Steele R. W., Soong S. J., Nahmias A. J. Changing presentation of herpes simplex virus infection in neonates. J Infect Dis. 1988 Jul;158(1):109–116. doi: 10.1093/infdis/158.1.109. [DOI] [PubMed] [Google Scholar]
  48. Whitley R. J., Nahmias A. J., Visintine A. M., Fleming C. L., Alford C. A. The natural history of herpes simplex virus infection of mother and newborn. Pediatrics. 1980 Oct;66(4):489–494. [PubMed] [Google Scholar]
  49. Whitley R. J., Yeager A., Kartus P., Bryson Y., Connor J. D., Alford C. A., Nahmias A., Soong S. J. Neonatal herpes simplex virus infection: follow-up evaluation of vidarabine therapy. Pediatrics. 1983 Dec;72(6):778–785. [PubMed] [Google Scholar]
  50. Wilson I. A., Skehel J. J., Wiley D. C. Structure of the haemagglutinin membrane glycoprotein of influenza virus at 3 A resolution. Nature. 1981 Jan 29;289(5796):366–373. doi: 10.1038/289366a0. [DOI] [PubMed] [Google Scholar]
  51. Yeager A. S., Arvin A. M., Urbani L. J., Kemp J. A., 3rd Relationship of antibody to outcome in neonatal herpes simplex virus infections. Infect Immun. 1980 Aug;29(2):532–538. doi: 10.1128/iai.29.2.532-538.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES