Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1990 Aug;86(2):600–605. doi: 10.1172/JCI114750

Proteinuria, not altered albumin metabolism, affects hyperlipidemia in the nephrotic rat.

R W Davies 1, I Staprans 1, F N Hutchison 1, G A Kaysen 1
PMCID: PMC296766  PMID: 2384606

Abstract

It has been established previously that nephrotic hyperlipidemia is characterized by both an increase in lipid synthesis and a defect in removal of lipoproteins. The relationship between these defects and altered albumin metabolism is uncertain. One hypothesis is that hepatic lipogenesis increases in parallel with albumin synthesis. To test this hypothesis, albumin synthesis was increased in nephrotic rats fed an 8.5% protein diet (LPN) by increasing dietary protein to 40% (HPN). Proteinuria was modulated in half of the rats fed 40% protein by enalapril (HPE). Albumin synthesis was the same in both HPN and HPE, but proteinuria was reduced in HPE compared to HPN, and so were serum cholesterol and triglycerides (TG). To examine the effect of serum albumin on lipid clearance in the absence of proteinuria, plasma clearance of chylomicrons (CM) and VLDL was measured in Nagase analbuminemic rats (NAR) and found to be no different than in normal SD rats. When proteinuria was induced in NAR and in SD rats, a severe and identical defect in both CM and VLDL clearance was acquired in both groups and blood lipid levels were increased to a similar degree in both groups. Neither hyperlipidemia nor defective removal of lipoproteins from the circulation are linked to albumin synthesis or serum albumin concentration but result, at least in part, from proteinuria. Postheparin lipoprotein lipase (LPL) activity was reduced slightly in nephrotic animals compared to nonnephrotic controls, but the most striking finding was a highly significant decrease in postheraprin LPL activity in normal NAR compared to SD rats (P less than 0.001), suggesting that reduced LPL activity is not responsible for reduced clearance of CM and VLDL in nephrotic rats.

Full text

PDF
600

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ALLEN J. C., BAXTER J. H., GOODMAN H. C. Effects of dextran, polyvinylpyrrolidone and gamma globulin on the hyperlipidemia of experimental nephrosis. J Clin Invest. 1961 Mar;40:499–508. doi: 10.1172/JCI104277. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Allain C. C., Poon L. S., Chan C. S., Richmond W., Fu P. C. Enzymatic determination of total serum cholesterol. Clin Chem. 1974 Apr;20(4):470–475. [PubMed] [Google Scholar]
  3. Ando S., Kon K., Tanaka Y., Nagase S., Nagai Y. Characterization of hyperlipidemia in Nagase analbuminemia rat (NAR). J Biochem. 1980 Jun;87(6):1859–1862. doi: 10.1093/oxfordjournals.jbchem.a132932. [DOI] [PubMed] [Google Scholar]
  4. Aukland K., Johnsen H. M. A colloid osmometer for small fluid samples. Acta Physiol Scand. 1974 Feb;90(2):485–490. doi: 10.1111/j.1748-1716.1974.tb05611.x. [DOI] [PubMed] [Google Scholar]
  5. Bar-On H., Chen Y. D., Reaven G. M. Evidence for a new cause of defective plasma removal of very low density lipoproteins in insulin-deficient rats. Diabetes. 1981 Jun;30(6):496–499. doi: 10.2337/diab.30.6.496. [DOI] [PubMed] [Google Scholar]
  6. Chan M. K., Persaud J. W., Ramdial L., Varghese Z., Sweny P., Moorhead J. F. Hyperlipidaemia in untreated nephrotic syndrome, increased production or decreased removal? Clin Chim Acta. 1981 Dec 24;117(3):317–323. doi: 10.1016/0009-8981(81)90119-4. [DOI] [PubMed] [Google Scholar]
  7. Esumi H., Sato S., Okui M., Sugimura T., Nagase S. Turnover of serum proteins in rats with analbuminemia. Biochem Biophys Res Commun. 1979 Apr 27;87(4):1191–1199. doi: 10.1016/s0006-291x(79)80033-9. [DOI] [PubMed] [Google Scholar]
  8. Esumi H., Takahashi Y., Sekiya T., Sato S., Nagase S., Sugimura T. Presence of albumin mRNA precursors in nuclei of analbuminemic rat liver lacking cytoplasmic albumin mRNA. Proc Natl Acad Sci U S A. 1982 Feb;79(3):734–738. doi: 10.1073/pnas.79.3.734. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Fossati P., Prencipe L. Serum triglycerides determined colorimetrically with an enzyme that produces hydrogen peroxide. Clin Chem. 1982 Oct;28(10):2077–2080. [PubMed] [Google Scholar]
  10. HAVEL R. J., EDER H. A., BRAGDON J. H. The distribution and chemical composition of ultracentrifugally separated lipoproteins in human serum. J Clin Invest. 1955 Sep;34(9):1345–1353. doi: 10.1172/JCI103182. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hutchinson F. N., Schambelan M., Kaysen G. A. Modulation of albuminuria by dietary protein and converting enzyme inhibition. Am J Physiol. 1987 Oct;253(4 Pt 2):F719–F725. doi: 10.1152/ajprenal.1987.253.4.F719. [DOI] [PubMed] [Google Scholar]
  12. Jones A. L., Ruderman N. B., Herrera M. G. Electron microscopic and biochemical study of lipoprotein synthesis in the isolated perfused rat liver. J Lipid Res. 1967 Sep;8(5):429–446. [PubMed] [Google Scholar]
  13. Kaysen G. A., Gambertoglio J., Felts J., Hutchison F. N. Albumin synthesis, albuminuria and hyperlipemia in nephrotic patients. Kidney Int. 1987 Jun;31(6):1368–1376. doi: 10.1038/ki.1987.151. [DOI] [PubMed] [Google Scholar]
  14. Kaysen G. A., Jones H., Jr, Martin V., Hutchison F. N. A low-protein diet restricts albumin synthesis in nephrotic rats. J Clin Invest. 1989 May;83(5):1623–1629. doi: 10.1172/JCI114060. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Kaysen G. A., Kirkpatrick W. G., Couser W. G. Albumin homeostasis in the nephrotic rat: nutritional considerations. Am J Physiol. 1984 Jul;247(1 Pt 2):F192–F202. doi: 10.1152/ajprenal.1984.247.1.F192. [DOI] [PubMed] [Google Scholar]
  16. Kaysen G. A., Watson J. B. Mechanism of hypoalbuminemia in the 7/8-nephrectomized rat with chronic renal failure. Am J Physiol. 1982 Oct;243(4):F372–F378. doi: 10.1152/ajprenal.1982.243.4.F372. [DOI] [PubMed] [Google Scholar]
  17. Kikuchi H., Tamura S., Nagase S., Tsuiki S. Hypertriacylglycerolemia and adipose tissue lipoprotein lipase activity in the Nagase analbuminemic rat. Biochim Biophys Acta. 1983 Apr 28;744(2):165–170. doi: 10.1016/0167-4838(83)90086-9. [DOI] [PubMed] [Google Scholar]
  18. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  19. Laurell C. B. Electroimmuno assay. Scand J Clin Lab Invest Suppl. 1972;124:21–37. doi: 10.3109/00365517209102748. [DOI] [PubMed] [Google Scholar]
  20. MARSH J. B., DRABKIN D. L. Experimental reconstruction of metabolic pattern of lipid nephrosis: key role of hepatic protein synthesis in hyperlipemia. Metabolism. 1960 Oct;9:946–955. [PubMed] [Google Scholar]
  21. Marsh J. B. Lipoprotein metabolism in experimental nephrosis. J Lipid Res. 1984 Dec 15;25(13):1619–1623. [PubMed] [Google Scholar]
  22. McGowan M. W., Artiss J. D., Strandbergh D. R., Zak B. A peroxidase-coupled method for the colorimetric determination of serum triglycerides. Clin Chem. 1983 Mar;29(3):538–542. [PubMed] [Google Scholar]
  23. Nagase S., Shimamune K., Shumiya S. Albumin-deficient rat mutant. Science. 1979 Aug 10;205(4406):590–591. doi: 10.1126/science.451621. [DOI] [PubMed] [Google Scholar]
  24. Nagase S., Shimamune K., Shumiya S. Albumin-deficient rat mutant: an animal model for analbuminemia. Jikken Dobutsu. 1980 Jan;29(1):33–38. doi: 10.1538/expanim1978.29.1_33. [DOI] [PubMed] [Google Scholar]
  25. RADDING C. M., STEINBERG D. Studies on the synthesis and secretion of serum lipoproteins by rat liver slices. J Clin Invest. 1960 Oct;39:1560–1569. doi: 10.1172/JCI104177. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Staprans I., Anderson C. D., Lurz F. W., Felts J. M. Separation of a lipoprotein lipase cofactor from the alpha 1-acid glycoprotein fraction from the urine of nephrotic patients. Biochim Biophys Acta. 1980 Mar 21;617(3):514–523. doi: 10.1016/0005-2760(80)90017-x. [DOI] [PubMed] [Google Scholar]
  27. Staprans I., Felts J. M., Couser W. G. Glycosaminoglycans and chylomicron metabolism in control and nephrotic rats. Metabolism. 1987 May;36(5):496–501. doi: 10.1016/0026-0495(87)90050-3. [DOI] [PubMed] [Google Scholar]
  28. TROUT D. L., ESTES E. H., Jr, FRIEDBERG S. J. Titration of free fatty acids of plasma: a study of current methods and a new modification. J Lipid Res. 1960 Apr;1:199–202. [PubMed] [Google Scholar]
  29. Takahashi M., Kusumi K., Shumiya S., Nagase S. Plasma lipid concentrations and enzyme activities in Nagase analbuminemia rats (NAR). Jikken Dobutsu. 1983 Jan;32(1):39–46. doi: 10.1538/expanim1978.32.1_39. [DOI] [PubMed] [Google Scholar]
  30. Whayne T. F., Jr, Felts J. M. Activation of lipoprotein lipase. Effects of rat serum lipoprotein fractions and heparin. Circ Res. 1970 Dec;27(6):941–951. doi: 10.1161/01.res.27.6.941. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES