Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Dec 3;65(Pt 1):m6. doi: 10.1107/S1600536808039901

(2,2′-Bipyridine-κ2 N,N′)iodido(piperidine-1-carbodithio­ato-κ2 S,S′)copper(II)

Le-Qing Fan a,*
PMCID: PMC2967849  PMID: 21581529

Abstract

In the title compound, [Cu(C6H10NS2)I(C10H8N2)], the CuII ion is coordinated by one iodide ion, two N atoms of the bipyridine ligand and two S atoms from the piperidine­carbodithio­ate ligand in a distorted square-pyramidal environment. π–π stacking inter­actions, with centroid–centroid distances of 3.643 (4) Å, between pyridyl rings of the bipyridyl ligands of neighbouring mol­ecules lead to chains propagating parallel to the a axis.

Related literature

For background to transition metal complexes, see: Engelhardt et al. (1988); Fernández et al. (2000); Koh et al. (2003); Noro et al. (2000); Yaghi et al. (1998).graphic file with name e-65-000m6-scheme1.jpg

Experimental

Crystal data

  • [Cu(C6H10NS2)I(C10H8N2)]

  • M r = 506.89

  • Monoclinic, Inline graphic

  • a = 6.532 (3) Å

  • b = 16.859 (7) Å

  • c = 17.578 (7) Å

  • β = 108.047 (14)°

  • V = 1840.5 (14) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.09 mm−1

  • T = 293 (2) K

  • 0.45 × 0.08 × 0.05 mm

Data collection

  • Rigaku Mercury CCD diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2000) T min = 0.751, T max = 1.000 (expected range = 0.643–0.857)

  • 13746 measured reflections

  • 3946 independent reflections

  • 3389 reflections with I > 2σ(I)

  • R int = 0.036

Refinement

  • R[F 2 > 2σ(F 2)] = 0.047

  • wR(F 2) = 0.108

  • S = 1.08

  • 3946 reflections

  • 208 parameters

  • H-atom parameters constrained

  • Δρmax = 0.52 e Å−3

  • Δρmin = −0.63 e Å−3

Data collection: CrystalClear (Rigaku, 2000); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808039901/ez2153sup1.cif

e-65-000m6-sup1.cif (17.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808039901/ez2153Isup2.hkl

e-65-000m6-Isup2.hkl (193.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported financially by the Research Fund of Huaqiao University (No. 06BS216) and the Young Talent Fund of Fujian Province (No. 2007 F3060).

supplementary crystallographic information

Comment

Research into transition metal complexes has been rapidly expanding because of their fascinating structural diversity, as well as their potential applications as functional materials and enzymes (Noro et al., 2000; Yaghi et al., 1998). Dialkyldithiocarbamate anions, which are typical sulfur ligands, acting as monodentate, bidentate or bridging ligands, are often chosen for the preparation of complexes with a considerable structural variety (Engelhardt et al., 1988; Fernández et al., 2000; Koh et al., 2003). I report here the crystal structure of the title copper(II) complex, (I), containing a piperidyldithiocarbamate ligand.

The crystal structure of (I) is built of discrete molecules of the CuII complex (Fig. 1). The CuII ion is five-coordinated in a distorted square-pyramidal environment by one I atom in the apical position, two N atoms from the bipyridine ligand and two S atoms from the piperidyldithiocarbamate ligand in the basal plane (Table 1).

There is a π-π stacking interaction between the pyridyl rings R1 [N(2)/C(7)–C(11)] and R2 [N3/C(12)–C(16)] with a centroid-to-centroid distance of 3.643 (4) Å. These face-to-face interactions result in the complexes assembling into chains.

Experimental

A mixture of Cu(Ac)2.H2O (0.08 g, 0.4 mmol), NaS2CNC5H10.2H2O (0.09 g, 0.4 mmol), 2,2'-bipyridine (0.06 g 0.4 mmol) and NaI.2H2O (0.07 g, 0.4 mmol) was stirred in DMF (15 ml). 2-PrOH was diffused into the resulting solution, yielding single crystals of (I).

Refinement

H atoms were positioned geometrically and refined as riding atoms, with C—H = 0.93 (aromatic) or 0.97 Å (piperidyl); Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I), showing the atom-labelling scheme, with 30% probability displacement ellipsoids.

Crystal data

[Cu(C6H10NS2)I(C10H8N2)] F(000) = 996
Mr = 506.89 Dx = 1.829 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 3988 reflections
a = 6.532 (3) Å θ = 3.3–27.5°
b = 16.859 (7) Å µ = 3.09 mm1
c = 17.578 (7) Å T = 293 K
β = 108.047 (14)° Prism, black
V = 1840.5 (14) Å3 0.45 × 0.08 × 0.05 mm
Z = 4

Data collection

Rigaku Mercury CCD diffractometer 3946 independent reflections
Radiation source: Sealed Tube 3389 reflections with I > 2σ(I)
Graphite Monochromator Rint = 0.036
ω scans θmax = 27.5°, θmin = 2.4°
Absorption correction: multi-scan (CrystalClear; Rigaku,2000) h = −8→6
Tmin = 0.751, Tmax = 1.000 k = −21→21
13746 measured reflections l = −22→22

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.108 H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.043P)2 + 2.8277P] where P = (Fo2 + 2Fc2)/3
3946 reflections (Δ/σ)max = 0.001
208 parameters Δρmax = 0.52 e Å3
0 restraints Δρmin = −0.63 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cu1 0.43714 (10) 0.66212 (3) 0.42086 (3) 0.04099 (17)
I1 0.19321 (6) 0.80141 (2) 0.36188 (2) 0.05420 (14)
S1 0.6396 (2) 0.64039 (8) 0.33518 (8) 0.0502 (3)
S2 0.2619 (3) 0.55763 (9) 0.34096 (8) 0.0586 (4)
N1 0.4731 (7) 0.5184 (2) 0.2378 (2) 0.0423 (9)
N2 0.6611 (7) 0.7232 (2) 0.5076 (2) 0.0401 (9)
N3 0.3271 (7) 0.6421 (2) 0.5154 (2) 0.0420 (9)
C1 0.4607 (8) 0.5651 (3) 0.2965 (3) 0.0386 (10)
C2 0.6306 (8) 0.5319 (3) 0.1943 (3) 0.0496 (12)
H2A 0.7044 0.4828 0.1907 0.059*
H2B 0.7370 0.5706 0.2225 0.059*
C3 0.5104 (9) 0.5620 (3) 0.1113 (3) 0.0556 (14)
H3A 0.6106 0.5693 0.0811 0.067*
H3B 0.4459 0.6130 0.1154 0.067*
C4 0.3347 (10) 0.5035 (4) 0.0674 (3) 0.0620 (15)
H4A 0.2530 0.5255 0.0160 0.074*
H4B 0.4004 0.4544 0.0578 0.074*
C5 0.1852 (9) 0.4865 (3) 0.1159 (3) 0.0533 (13)
H5A 0.1057 0.5342 0.1194 0.064*
H5B 0.0822 0.4461 0.0891 0.064*
C6 0.3075 (9) 0.4585 (3) 0.1993 (3) 0.0499 (13)
H6A 0.2094 0.4515 0.2304 0.060*
H6B 0.3757 0.4079 0.1966 0.060*
C7 0.8254 (8) 0.7641 (3) 0.4972 (3) 0.0464 (12)
H7A 0.8406 0.7663 0.4464 0.056*
C8 0.9733 (9) 0.8031 (3) 0.5591 (3) 0.0537 (13)
H8A 1.0845 0.8323 0.5503 0.064*
C9 0.9520 (10) 0.7979 (3) 0.6347 (4) 0.0615 (16)
H9A 1.0515 0.8226 0.6777 0.074*
C10 0.7829 (9) 0.7558 (3) 0.6462 (3) 0.0553 (14)
H10A 0.7675 0.7519 0.6969 0.066*
C11 0.6367 (8) 0.7197 (3) 0.5814 (3) 0.0430 (11)
C12 0.4453 (9) 0.6746 (3) 0.5851 (3) 0.0417 (11)
C13 0.3853 (10) 0.6676 (3) 0.6542 (3) 0.0528 (13)
H13A 0.4662 0.6917 0.7016 0.063*
C14 0.2037 (10) 0.6243 (3) 0.6510 (3) 0.0587 (15)
H14A 0.1636 0.6173 0.6970 0.070*
C15 0.0828 (10) 0.5918 (3) 0.5800 (4) 0.0614 (16)
H15A −0.0417 0.5634 0.5769 0.074*
C16 0.1483 (9) 0.6016 (3) 0.5129 (3) 0.0515 (13)
H16A 0.0661 0.5794 0.4646 0.062*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cu1 0.0480 (4) 0.0472 (3) 0.0298 (3) −0.0078 (3) 0.0150 (3) −0.0058 (2)
I1 0.0605 (3) 0.0538 (2) 0.0489 (2) 0.00754 (16) 0.01783 (18) 0.01277 (15)
S1 0.0491 (8) 0.0629 (8) 0.0430 (6) −0.0169 (6) 0.0207 (6) −0.0195 (6)
S2 0.0670 (10) 0.0688 (8) 0.0495 (7) −0.0287 (7) 0.0322 (7) −0.0201 (6)
N1 0.043 (3) 0.048 (2) 0.0346 (19) −0.0025 (18) 0.0103 (18) −0.0079 (16)
N2 0.043 (3) 0.0428 (19) 0.0308 (18) 0.0023 (17) 0.0068 (17) −0.0013 (15)
N3 0.057 (3) 0.0387 (19) 0.0343 (19) 0.0032 (18) 0.0195 (18) 0.0019 (15)
C1 0.044 (3) 0.040 (2) 0.031 (2) −0.002 (2) 0.011 (2) −0.0012 (17)
C2 0.043 (3) 0.062 (3) 0.042 (3) −0.001 (2) 0.011 (2) −0.017 (2)
C3 0.060 (4) 0.066 (3) 0.042 (3) −0.010 (3) 0.019 (3) −0.003 (2)
C4 0.069 (4) 0.070 (4) 0.038 (3) −0.011 (3) 0.003 (3) −0.004 (3)
C5 0.056 (4) 0.045 (3) 0.047 (3) −0.010 (2) −0.001 (3) −0.001 (2)
C6 0.065 (4) 0.040 (2) 0.042 (3) −0.012 (2) 0.013 (2) −0.007 (2)
C7 0.047 (3) 0.048 (3) 0.044 (3) −0.005 (2) 0.013 (2) −0.002 (2)
C8 0.048 (3) 0.048 (3) 0.058 (3) −0.002 (2) 0.005 (3) −0.008 (2)
C9 0.060 (4) 0.053 (3) 0.054 (3) 0.001 (3) −0.008 (3) −0.019 (3)
C10 0.067 (4) 0.052 (3) 0.037 (3) 0.012 (3) 0.003 (3) −0.007 (2)
C11 0.050 (3) 0.044 (2) 0.030 (2) 0.014 (2) 0.006 (2) −0.0001 (18)
C12 0.058 (3) 0.042 (2) 0.027 (2) 0.012 (2) 0.016 (2) 0.0019 (17)
C13 0.071 (4) 0.054 (3) 0.037 (3) 0.017 (3) 0.022 (3) 0.010 (2)
C14 0.085 (5) 0.058 (3) 0.046 (3) 0.021 (3) 0.038 (3) 0.013 (2)
C15 0.082 (4) 0.046 (3) 0.073 (4) 0.007 (3) 0.048 (3) 0.006 (3)
C16 0.067 (4) 0.045 (3) 0.052 (3) −0.004 (2) 0.033 (3) −0.004 (2)

Geometric parameters (Å, °)

Cu1—N3 2.033 (4) C5—C6 1.510 (7)
Cu1—N2 2.035 (4) C5—H5A 0.9700
Cu1—S1 2.3205 (15) C5—H5B 0.9700
Cu1—S2 2.3218 (15) C6—H6A 0.9700
Cu1—I1 2.8470 (11) C6—H6B 0.9700
S1—C1 1.717 (5) C7—C8 1.379 (7)
S2—C1 1.716 (5) C7—H7A 0.9300
N1—C1 1.320 (6) C8—C9 1.380 (8)
N1—C2 1.476 (6) C8—H8A 0.9300
N1—C6 1.482 (6) C9—C10 1.379 (9)
N2—C7 1.335 (6) C9—H9A 0.9300
N2—C11 1.357 (6) C10—C11 1.380 (7)
N3—C16 1.342 (6) C10—H10A 0.9300
N3—C12 1.345 (6) C11—C12 1.481 (7)
C2—C3 1.514 (7) C12—C13 1.392 (6)
C2—H2A 0.9700 C13—C14 1.380 (8)
C2—H2B 0.9700 C13—H13A 0.9300
C3—C4 1.529 (7) C14—C15 1.369 (8)
C3—H3A 0.9700 C14—H14A 0.9300
C3—H3B 0.9700 C15—C16 1.384 (7)
C4—C5 1.511 (8) C15—H15A 0.9300
C4—H4A 0.9700 C16—H16A 0.9300
C4—H4B 0.9700
N3—Cu1—N2 79.95 (16) C6—C5—C4 111.5 (5)
N3—Cu1—S1 157.11 (12) C6—C5—H5A 109.3
N2—Cu1—S1 98.30 (12) C4—C5—H5A 109.3
N3—Cu1—S2 97.80 (12) C6—C5—H5B 109.3
N2—Cu1—S2 160.43 (12) C4—C5—H5B 109.3
S1—Cu1—S2 76.17 (5) H5A—C5—H5B 108.0
N3—Cu1—I1 97.76 (11) N1—C6—C5 108.8 (4)
N2—Cu1—I1 92.69 (11) N1—C6—H6A 109.9
S1—Cu1—I1 105.13 (5) C5—C6—H6A 109.9
S2—Cu1—I1 106.86 (6) N1—C6—H6B 109.9
C1—S1—Cu1 85.37 (16) C5—C6—H6B 109.9
C1—S2—Cu1 85.37 (16) H6A—C6—H6B 108.3
C1—N1—C2 122.3 (4) N2—C7—C8 122.3 (5)
C1—N1—C6 123.4 (4) N2—C7—H7A 118.8
C2—N1—C6 113.3 (4) C8—C7—H7A 118.8
C7—N2—C11 119.4 (4) C7—C8—C9 118.3 (6)
C7—N2—Cu1 125.5 (3) C7—C8—H8A 120.8
C11—N2—Cu1 115.1 (3) C9—C8—H8A 120.8
C16—N3—C12 119.0 (4) C10—C9—C8 119.9 (5)
C16—N3—Cu1 125.6 (3) C10—C9—H9A 120.1
C12—N3—Cu1 115.4 (3) C8—C9—H9A 120.1
N1—C1—S2 123.5 (4) C9—C10—C11 119.2 (5)
N1—C1—S1 123.5 (4) C9—C10—H10A 120.4
S2—C1—S1 113.1 (2) C11—C10—H10A 120.4
N1—C2—C3 108.3 (4) N2—C11—C10 120.9 (5)
N1—C2—H2A 110.0 N2—C11—C12 114.5 (4)
C3—C2—H2A 110.0 C10—C11—C12 124.7 (5)
N1—C2—H2B 110.0 N3—C12—C13 121.5 (5)
C3—C2—H2B 110.0 N3—C12—C11 115.1 (4)
H2A—C2—H2B 108.4 C13—C12—C11 123.4 (5)
C2—C3—C4 110.8 (4) C14—C13—C12 118.7 (5)
C2—C3—H3A 109.5 C14—C13—H13A 120.6
C4—C3—H3A 109.5 C12—C13—H13A 120.6
C2—C3—H3B 109.5 C15—C14—C13 119.6 (5)
C4—C3—H3B 109.5 C15—C14—H14A 120.2
H3A—C3—H3B 108.1 C13—C14—H14A 120.2
C5—C4—C3 110.6 (4) C14—C15—C16 119.1 (6)
C5—C4—H4A 109.5 C14—C15—H15A 120.4
C3—C4—H4A 109.5 C16—C15—H15A 120.4
C5—C4—H4B 109.5 N3—C16—C15 121.9 (5)
C3—C4—H4B 109.5 N3—C16—H16A 119.1
H4A—C4—H4B 108.1 C15—C16—H16A 119.1

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: EZ2153).

References

  1. Engelhardt, L. M., Healy, P. C., Shephard, R. M., Skelton, B. W. & White, A. H. (1988). Inorg. Chem.27, 2371–2373.
  2. Fernández, E. J., López-de-Luzuriaga, J. M., Monge, M., Olmos, E., Laguna, A., Villacampa, M. D. & Jones, P. G. (2000). J. Cluster Sci.11, 153–167.
  3. Koh, Y. W., Lai, C. S., Du, A. Y., Tiekink, E. R. T. & Loh, K. P. (2003). Chem. Mater.15, 4544–4554.
  4. Noro, S., Kitagawa, S., Kondo, M. & Seki, K. (2000). Angew. Chem. Int. Ed.39, 2081–2084. [DOI] [PubMed]
  5. Rigaku (2000). CrystalClear Rigaku Corporation, Akishima, Tokyo, Japan.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  7. Yaghi, O. M., Li, H., Davis, C., Richardson, D. & Groy, T. L. (1998). Acc. Chem. Res.31, 474–484.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808039901/ez2153sup1.cif

e-65-000m6-sup1.cif (17.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808039901/ez2153Isup2.hkl

e-65-000m6-Isup2.hkl (193.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES