Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Dec 6;65(Pt 1):m9–m10. doi: 10.1107/S1600536808040294

Dichlorido(di-2-pyridylamine)mercury(II)

Mohammad Yousefi a, Mohammad Reza Allahgholi Ghasri a, Amene Heidari b, Vahid Amani a,*
PMCID: PMC2967852  PMID: 21581552

Abstract

In the mol­ecule of the title compound, [HgCl2(C10H9N3)], the HgII atom is four-coordinated in a distorted tetra­hedral configuration by two N atoms from the chelating di-2-pyridylamine ligand and by two Cl atoms. In the crystal structure, inter­molecular N—H⋯Cl hydrogen bonds link the mol­ecules into centrosymmetric dimers. There is a π–π contact between the pyridine rings [centroid–centroid distance = 3.896 (5) Å].

Related literature

For related literature, see: Ahmadi et al. (2008); Kalateh, Ebadi et al. (2008); Kalateh, Norouzi et al. (2008); Khavasi et al. (2008); Tadayon Pour et al. (2008); Yousefi, Rashidi Vahid et al. (2008); Yousefi, Tadayon Pour et al. (2008). For related structures, see: Chen et al. (2006); Liu et al. (2004). For bond-length data, see: Allen et al. (1987).graphic file with name e-65-000m9-scheme1.jpg

Experimental

Crystal data

  • [HgCl2(C10H9N3)]

  • M r = 442.69

  • Triclinic, Inline graphic

  • a = 8.0268 (12) Å

  • b = 8.6127 (11) Å

  • c = 9.6118 (14) Å

  • α = 110.606 (11)°

  • β = 98.958 (12)°

  • γ = 96.862 (11)°

  • V = 603.38 (15) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 13.17 mm−1

  • T = 298 (2) K

  • 0.24 × 0.21 × 0.15 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi scan (SADABS; Sheldrick, 1998) T min = 0.061, T max = 0.142

  • 7105 measured reflections

  • 3214 independent reflections

  • 2806 reflections with I > 2σ(I)

  • R int = 0.069

Refinement

  • R[F 2 > 2σ(F 2)] = 0.046

  • wR(F 2) = 0.126

  • S = 1.05

  • 3214 reflections

  • 150 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 2.43 e Å−3

  • Δρmin = −2.08 e Å−3

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808040294/hk2588sup1.cif

e-65-000m9-sup1.cif (16.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808040294/hk2588Isup2.hkl

e-65-000m9-Isup2.hkl (154.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected geometric parameters (Å, °).

Cl1—Hg1 2.3875 (19)
Cl2—Hg1 2.4579 (19)
N1—Hg1 2.369 (6)
N3—Hg1 2.290 (6)
N1—Hg1—Cl1 112.30 (15)
N1—Hg1—Cl2 94.92 (15)
N3—Hg1—Cl1 112.21 (15)
N3—Hg1—Cl2 123.92 (14)
N3—Hg1—N1 82.4 (2)
Cl1—Hg1—Cl2 120.14 (7)

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2B⋯Cl2i 0.95 (16) 2.41 (16) 3.345 (6) 169 (13)

Symmetry code: (i) Inline graphic.

Acknowledgments

We are grateful to the Islamic Azad University, Shahr-e-Rey Branch, for financial support.

supplementary crystallographic information

Comment

Recently, we reported the synthes and crystal structures of [Hg(NH(py)2)Br2], (II), (Kalateh, Norouzi et al., 2008), [Hg(4,4'-dmbpy)I2], (III), (Yousefi, Tadayon Pour et al., 2008), [Hg(5,5'-dmbpy)I2], (IV), (Tadayon Pour et al., 2008), [Hg(dmphen)I2], (V), (Yousefi, Rashidi Vahid et al., 2008), {[HgCl(dm4bt)]2(µ-Cl)2}, (VI), (Khavasi et al., 2008), [Hg(6-mbpy)Cl2], (VII), (Ahmadi et al., 2008) and [{HgBr(4,4'-dmbpy)}2(µ-Br)2], (VIII), (Kalateh, Ebadi et al., 2008) [where NH(py)2 is di-2-pyridylamine, 4,4'-dmbpy is 4,4'-dimethyl-2,2'-bipyridine, 5,5'-dmbpy is 5,5'-dimethyl-2,2'-bipyridine, 6-mbpy is 6-methyl-2,2'-bipyridine, dmphen is 4,7-diphenyl- 1,10-phenanthroline and dm4bt is 2,2'-dimethyl-4,4'-bithiazole].

There are several HgII complexes, with formula, [Hg(N—N)Cl2], such as [Hg(bipy)Cl2], (IX), and [Hg(bipy)Cl2][HgCl2], (X), (Chen et al., 2006) and [Hg(dpdmbip) Cl2].CH2Cl2, (XI), (Liu et al., 2004) [where bipy is 2,2'-bipyridine and dpdmbip is 4,4'-diphenyl-6,6'-dimethyl-2,2'-bipyrimidine] have been synthesized and characterized by single-crystal X-ray diffraction methods. We report herein the synthesis and crystal structure of the title compound, (I).

In the title compound, (Fig. 1), the HgII atom is four-coordinated in a distorted tetrahedral configuration by two N atoms from di-2-pyridylamine and two Cl atoms. The Hg-Cl and Hg-N bond lengths (Allen et al., 1987) and angles (Table 1) are within normal ranges.

In the crystal structure, intermolecular N-H···Cl hydrogen bonds (Table 2) link the molecules into centrosymmetric dimers, in which they may be effective in the stabilization of the crystal structure (Fig. 2). The π-π contact between the pyridine rings, Cg2···Cg3i [symmetry code: (i) -x, 1 - y, 1 - z, where Cg2 and Cg3 are centroids of the rings A (N1/C1-C5) and B (N3/C6-C10), respectively] may further stabilize the structure, with centroid-centroid distance of 3.896 (5)%A.

Experimental

For the preparation of the title compound, (I), a solution of di-2-pyridylamine (0.25 g, 1.43 mmol) in methanol (20 ml) was added to a solution of HgCl2 (0.39 g, 1.43 mmol) in acetonitrile (20 ml) and the resulting colorless solution was stirred for 20 min at 313 K. This solution was left to evaporate slowly at room temperature. After one week, colorless block crystals of the title compound were isolated (yield; 0.47 g, 74.3%).

Refinement

H2B atom (for NH) was located in difference synthesis and refined isotropically [N-H = 0.95 (14) Å and Uiso(H) = 0.10 (4) Å2]. The remaining H atoms were positioned geometrically, with C-H = 0.93 Å for aromatic H and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 40% probability level.

Fig. 2.

Fig. 2.

A packing diagram of the title compound. Hydrogen bonds are shown as dashed lines.

Crystal data

[HgCl2(C10H9N3)] Z = 2
Mr = 442.69 F(000) = 408
Triclinic, P1 Dx = 2.437 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 8.0268 (12) Å Cell parameters from 1652 reflections
b = 8.6127 (11) Å θ = 2.6–29.2°
c = 9.6118 (14) Å µ = 13.17 mm1
α = 110.606 (11)° T = 298 K
β = 98.958 (12)° Block, colorless
γ = 96.862 (11)° 0.24 × 0.21 × 0.15 mm
V = 603.38 (15) Å3

Data collection

Bruker SMART CCD area-detector diffractometer 3214 independent reflections
Radiation source: fine-focus sealed tube 2806 reflections with I > 2σ(I)
graphite Rint = 0.069
φ and ω scans θmax = 29.2°, θmin = 2.6°
Absorption correction: multi scan (SADABS; Sheldrick, 1998) h = −10→10
Tmin = 0.061, Tmax = 0.142 k = −11→11
7105 measured reflections l = −13→12

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.046 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.126 w = 1/[σ2(Fo2) + (0.075P)2 + 0.8992P] where P = (Fo2 + 2Fc2)/3
S = 1.05 (Δ/σ)max = 0.026
3214 reflections Δρmax = 2.43 e Å3
150 parameters Δρmin = −2.08 e Å3
0 restraints Extinction correction: SHELXTL (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.048 (3)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Hg1 0.21151 (4) 0.24646 (4) 0.63832 (4) 0.06055 (18)
Cl1 0.4456 (3) 0.1830 (3) 0.7818 (3) 0.0683 (5)
Cl2 −0.0856 (2) 0.1450 (2) 0.6448 (2) 0.0553 (4)
N1 0.1944 (8) 0.5364 (8) 0.7382 (7) 0.0497 (12)
N2 0.2047 (8) 0.5833 (7) 0.5110 (6) 0.0459 (11)
N3 0.2876 (7) 0.3143 (7) 0.4439 (7) 0.0447 (11)
C1 0.1758 (12) 0.5982 (12) 0.8836 (9) 0.0636 (19)
H1 0.1862 0.5294 0.9393 0.076*
C2 0.1428 (12) 0.7553 (13) 0.9537 (9) 0.069 (2)
H2 0.1285 0.7920 1.0537 0.083*
H2B 0.186 (18) 0.662 (18) 0.464 (16) 0.10 (4)*
C3 0.1312 (11) 0.8591 (11) 0.8713 (9) 0.0624 (18)
H3 0.1115 0.9683 0.9157 0.075*
C4 0.1493 (9) 0.7975 (9) 0.7231 (8) 0.0514 (14)
H4 0.1379 0.8635 0.6649 0.062*
C5 0.1848 (7) 0.6352 (7) 0.6597 (7) 0.0398 (11)
C6 0.2674 (7) 0.4531 (7) 0.4151 (7) 0.0395 (10)
C7 0.3045 (9) 0.4711 (10) 0.2836 (7) 0.0499 (13)
H7 0.2849 0.5656 0.2627 0.060*
C8 0.3715 (12) 0.3449 (13) 0.1842 (10) 0.067 (2)
H8 0.4006 0.3559 0.0977 0.080*
C9 0.3935 (9) 0.2066 (10) 0.2156 (9) 0.0587 (18)
H9 0.4365 0.1208 0.1498 0.070*
C10 0.3524 (9) 0.1931 (9) 0.3444 (10) 0.0556 (16)
H10 0.3694 0.0976 0.3648 0.067*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Hg1 0.0618 (2) 0.0660 (2) 0.0781 (3) 0.02555 (14) 0.02487 (14) 0.04774 (18)
Cl1 0.0653 (11) 0.0710 (11) 0.0816 (13) 0.0210 (9) 0.0091 (9) 0.0445 (10)
Cl2 0.0623 (9) 0.0551 (8) 0.0628 (9) 0.0170 (7) 0.0277 (7) 0.0314 (7)
N1 0.051 (3) 0.058 (3) 0.050 (3) 0.019 (2) 0.014 (2) 0.027 (2)
N2 0.059 (3) 0.043 (2) 0.045 (3) 0.016 (2) 0.015 (2) 0.024 (2)
N3 0.043 (2) 0.041 (2) 0.056 (3) 0.006 (2) 0.013 (2) 0.023 (2)
C1 0.072 (5) 0.078 (5) 0.051 (4) 0.020 (4) 0.017 (3) 0.033 (4)
C2 0.071 (5) 0.084 (6) 0.047 (4) 0.019 (4) 0.012 (3) 0.017 (4)
C3 0.066 (4) 0.061 (4) 0.052 (4) 0.013 (4) 0.015 (3) 0.009 (3)
C4 0.053 (3) 0.045 (3) 0.052 (3) 0.007 (3) 0.008 (3) 0.014 (3)
C5 0.035 (2) 0.043 (3) 0.043 (3) 0.006 (2) 0.007 (2) 0.019 (2)
C6 0.037 (2) 0.040 (3) 0.042 (3) 0.005 (2) 0.008 (2) 0.017 (2)
C7 0.052 (3) 0.060 (4) 0.046 (3) 0.017 (3) 0.015 (2) 0.026 (3)
C8 0.064 (4) 0.088 (6) 0.057 (4) 0.013 (4) 0.025 (3) 0.032 (4)
C9 0.045 (3) 0.054 (4) 0.063 (4) 0.008 (3) 0.018 (3) 0.003 (3)
C10 0.049 (3) 0.047 (3) 0.072 (4) 0.011 (3) 0.020 (3) 0.021 (3)

Geometric parameters (Å, °)

Cl1—Hg1 2.3875 (19) C5—N1 1.323 (8)
Cl2—Hg1 2.4579 (19) C5—N2 1.381 (8)
N1—Hg1 2.369 (6) C6—N3 1.341 (8)
N2—H2B 0.95 (14) C6—N2 1.383 (8)
N3—Hg1 2.290 (6) C6—C7 1.398 (9)
C1—N1 1.349 (10) C7—C8 1.397 (11)
C1—C2 1.363 (13) C7—H7 0.9300
C1—H1 0.9300 C8—C9 1.352 (14)
C2—C3 1.390 (14) C8—H8 0.9300
C2—H2 0.9300 C9—C10 1.369 (12)
C3—C4 1.372 (11) C9—H9 0.9300
C3—H3 0.9300 C10—N3 1.362 (9)
C4—C5 1.399 (9) C10—H10 0.9300
C4—H4 0.9300
N1—Hg1—Cl1 112.30 (15) N2—C6—C7 116.6 (5)
N1—Hg1—Cl2 94.92 (15) C8—C7—C6 119.0 (7)
N3—Hg1—Cl1 112.21 (15) C8—C7—H7 120.5
N3—Hg1—Cl2 123.92 (14) C6—C7—H7 120.5
N3—Hg1—N1 82.4 (2) C9—C8—C7 119.0 (7)
Cl1—Hg1—Cl2 120.14 (7) C9—C8—H8 120.6
N1—C1—C2 123.8 (8) C7—C8—H8 120.4
N1—C1—H1 118.1 C8—C9—C10 119.9 (7)
C2—C1—H1 118.1 C8—C9—H9 120.0
C1—C2—C3 117.9 (8) C10—C9—H9 120.1
C1—C2—H2 121.0 N3—C10—C9 122.5 (7)
C3—C2—H2 121.0 N3—C10—H10 118.7
C4—C3—C2 118.7 (8) C9—C10—H10 118.8
C4—C3—H3 120.6 C5—N1—C1 118.4 (7)
C2—C3—H3 120.7 C5—N1—Hg1 125.5 (4)
C3—C4—C5 119.9 (7) C1—N1—Hg1 115.7 (5)
C3—C4—H4 120.1 C6—N2—C5 136.0 (5)
C5—C4—H4 120.0 C6—N2—H2B 109 (8)
N1—C5—N2 122.3 (6) C5—N2—H2B 115 (8)
N1—C5—C4 121.1 (6) C6—N3—C10 118.2 (6)
N2—C5—C4 116.6 (6) C6—N3—Hg1 127.3 (4)
N3—C6—N2 122.1 (6) C10—N3—Hg1 114.4 (5)
N3—C6—C7 121.3 (6)
C1—N1—Hg1—N3 −169.7 (6) C6—C7—C8—C9 2.0 (12)
C5—N1—Hg1—N3 17.3 (5) C7—C8—C9—C10 −0.9 (13)
C1—N1—Hg1—Cl1 −58.7 (6) C8—C9—C10—N3 0.6 (12)
C1—N1—Hg1—Cl2 66.7 (6) N2—C5—N1—C1 179.1 (7)
C5—N1—Hg1—Cl1 128.2 (5) C4—C5—N1—C1 −2.6 (10)
C5—N1—Hg1—Cl2 −106.3 (5) N2—C5—N1—Hg1 −8.1 (9)
C6—N3—Hg1—N1 −15.5 (5) C4—C5—N1—Hg1 170.3 (5)
C10—N3—Hg1—N1 168.0 (5) C2—C1—N1—C5 1.9 (13)
C6—N3—Hg1—Cl1 −126.5 (5) C2—C1—N1—Hg1 −171.6 (7)
C10—N3—Hg1—Cl1 57.0 (5) N3—C6—N2—C5 17.7 (11)
C6—N3—Hg1—Cl2 75.3 (5) C7—C6—N2—C5 −164.1 (7)
C10—N3—Hg1—Cl2 −101.2 (5) N1—C5—N2—C6 −15.3 (11)
N1—C1—C2—C3 −1.4 (15) C4—C5—N2—C6 166.3 (7)
C1—C2—C3—C4 1.5 (14) N2—C6—N3—C10 −179.2 (6)
C2—C3—C4—C5 −2.3 (12) C7—C6—N3—C10 2.7 (9)
C3—C4—C5—N1 2.8 (10) N2—C6—N3—Hg1 4.5 (8)
C3—C4—C5—N2 −178.7 (7) C7—C6—N3—Hg1 −173.7 (5)
N3—C6—C7—C8 −3.0 (10) C9—C10—N3—C6 −1.5 (10)
N2—C6—C7—C8 178.7 (7) C9—C10—N3—Hg1 175.3 (6)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N2—H2B···Cl2i 0.95 (16) 2.41 (16) 3.345 (6) 169 (13)

Symmetry codes: (i) −x, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HK2588).

References

  1. Ahmadi, R., Ebadi, A., Kalateh, K., Norouzi, A. & Amani, V. (2008). Acta Cryst. E64, m1407. [DOI] [PMC free article] [PubMed]
  2. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  3. Bruker (1998). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Chen, W. T., Wang, M. S., Liu, X., Guo, G. C. & Huang, J. S. (2006). Cryst. Growth Des.6, 2289–2300.
  5. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  6. Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  7. Kalateh, K., Ebadi, A., Ahmadi, R., Amani, V. & Khavasi, H. R. (2008). Acta Cryst. E64, m1397–m1398. [DOI] [PMC free article] [PubMed]
  8. Kalateh, K., Norouzi, A., Ebadi, A., Ahmadi, R. & Amani, V. (2008). Acta Cryst. E64, m1583–m1584. [DOI] [PMC free article] [PubMed]
  9. Khavasi, H. R., Abedi, A., Amani, V., Notash, B. & Safari, N. (2008). Polyhedron, 27, 1848–1854.
  10. Liu, Q. D., Wang, R. & Wang, S. (2004). Dalton Trans. pp. 2073–2079. [DOI] [PubMed]
  11. Sheldrick, G. M. (1998). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  12. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  13. Tadayon Pour, N., Ebadi, A., Abedi, A., Amani, V. & Khavasi, H. R. (2008). Acta Cryst. E64, m1305. [DOI] [PMC free article] [PubMed]
  14. Yousefi, M., Rashidi Vahid, R., Amani, V., Arab Chamjangali, M. & Khavasi, H. R. (2008). Acta Cryst. E64, m1339–m1340. [DOI] [PMC free article] [PubMed]
  15. Yousefi, M., Tadayon Pour, N., Amani, V. & Khavasi, H. R. (2008). Acta Cryst. E64, m1259. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808040294/hk2588sup1.cif

e-65-000m9-sup1.cif (16.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808040294/hk2588Isup2.hkl

e-65-000m9-Isup2.hkl (154.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES