Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Dec 6;65(Pt 1):m11. doi: 10.1107/S1600536808040385

(2,2′-Bipyridine)(2-formyl-6-methoxy­phenolato)nickel(II) perchlorate

Cui-Juan Wang a,*, Ping-Di Ren a, Wei-Ping Wu b, Zhi-Bin Zhang a
PMCID: PMC2967862  PMID: 21581476

Abstract

In the title compound, [Ni(C8H7O3)(C10H8N2)]ClO4, the NiII atom is in a slightly distorted square-planar coordination by two N atoms from the 2,2′-bipyridine (bipy) ligand and two O atoms from the deprotonated 2-formyl-6-methoxy­phenolate (mbd) ligand. The bipy ligand is nearly coplanar with the NiII square plane, the Ni atom being only 0.042 (2) Å from the mean plane, whereas the benzaldehyde plane is folded with respect to the square plane, making a dihedral angle of 19.17 (8)°. One of the O atoms of the perchlorate anion is involved in a weak inter­action with the Ni atom, with an Ni—O distance of 2.5732 (18) Å. The packing is stabilized by weak C—H⋯O inter­actions.

Related literature

For general background, see: Alizadeh et al. (1999); Hamblin et al. (2002); Minuti et al. (1999). For a related structure, see: Liu et al. (2008).graphic file with name e-65-00m11-scheme1.jpg

Experimental

Crystal data

  • [Ni(C8H7O3)(C10H8N2)]ClO4

  • M r = 465.48

  • Triclinic, Inline graphic

  • a = 8.460 (1) Å

  • b = 9.580 (1) Å

  • c = 11.956 (2) Å

  • α = 84.45 (1)°

  • β = 80.05 (1)°

  • γ = 80.25 (1)°

  • V = 938.4 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.22 mm−1

  • T = 298 (2) K

  • 0.32 × 0.26 × 0.19 mm

Data collection

  • Bruker APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004) T min = 0.696, T max = 0.801

  • 3644 measured reflections

  • 3381 independent reflections

  • 2838 reflections with I > 2σ(I)

  • R int = 0.009

Refinement

  • R[F 2 > 2σ(F 2)] = 0.029

  • wR(F 2) = 0.077

  • S = 1.04

  • 3381 reflections

  • 263 parameters

  • H-atom parameters constrained

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.50 e Å−3

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2; data reduction: APEX2; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996) and ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808040385/dn2410sup1.cif

e-65-00m11-sup1.cif (18.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808040385/dn2410Isup2.hkl

e-65-00m11-Isup2.hkl (165.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4⋯O7i 0.93 2.58 3.461 (4) 159
C12—H12⋯O5ii 0.93 2.57 3.499 (3) 177
C15—H15⋯O5ii 0.93 2.59 3.517 (3) 171

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

The authors are grateful to the Young Teacher Underway Science Foundation of Southwest JiaoTong University for financial support.

supplementary crystallographic information

Comment

2,2'-Bipyridyl ligand is bidentate chelating ligand, which can commonly act as terminal ligands, and may also provide molecular interaction sites for molecular recognition or assembly (Minuti et al., 1999; Hamblin et al., 2002). On the other hand, aldehyde ligands have significant importance in chemistry, specially in the development of its complexes, because this type ligands are potentially capable of forming stable complexes with metal ions (Alizadeh et al., 1999). Herein we report the synthesis and characterization of the title complex with mixed co-ligand.

The NiII atom in the title complex, has a square coordination formed by two N atoms from Bipy ligand and two O atoms from protonated mbd ligand (Fig. 1). One of the O atom of the perchlorate anion is in weak interaction with the Ni atom with a Ni—O distance of 2.5732 (18) Å. The average Ni—N bond length of 1.98 Å is close to the values observed in related complexes (Liu et al., 2008). The occurrence of C—H···O hydrogen bonding stabilizes the packing (Table 1).

Experimental

Bipy (0.023 g, 0.12 mmol), Ni(ClO4)2 (0.028 g, 0.13 mmol) and Hmbd (0.020 g, 0.16 mmol), were added in a solvent of ethanol, the mixture was stirring were required. The resultant solution was kept at room temperature for three weeks yielding green crystals of (I)

Refinement

All H atoms attached were fixed geometrically and treated as riding on their parent C atoms with C—H = 0.96 Å (methyl) or 0.93 Å (aromatic) with Uiso(H) = 1.2Ueq(aromatic) or Uiso(H) = 1.5Ueq(methyl).

Figures

Fig. 1.

Fig. 1.

Molecular view of compound (I) with the atom-labeling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii.

Crystal data

[Ni(C8H7O3)(C10H8N2)]ClO4 Z = 2
Mr = 465.48 F(000) = 476
Triclinic, P1 Dx = 1.647 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 8.460 (1) Å Cell parameters from 3381 reflections
b = 9.580 (1) Å θ = 1.7–25.2°
c = 11.956 (2) Å µ = 1.22 mm1
α = 84.45 (1)° T = 298 K
β = 80.05 (1)° Block, green
γ = 80.25 (1)° 0.32 × 0.26 × 0.19 mm
V = 938.4 (2) Å3

Data collection

Bruker APEXII area-detector diffractometer 3381 independent reflections
Radiation source: fine-focus sealed tube 2838 reflections with I > 2σ(I)
graphite Rint = 0.009
φ and ω scans θmax = 25.2°, θmin = 1.7°
Absorption correction: multi-scan (SADABS; Bruker, 2004) h = 0→10
Tmin = 0.696, Tmax = 0.801 k = −11→11
3644 measured reflections l = −14→14

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.077 H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.049P)2] where P = (Fo2 + 2Fc2)/3
3381 reflections (Δ/σ)max = 0.001
263 parameters Δρmax = 0.25 e Å3
0 restraints Δρmin = −0.49 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Ni1 0.62596 (3) 0.46273 (3) 0.37323 (2) 0.03207 (11)
O1 0.8230 (2) 0.46228 (19) 0.43851 (14) 0.0491 (4)
O2 0.54224 (18) 0.33979 (16) 0.49436 (13) 0.0397 (4)
O3 0.4083 (2) 0.12543 (17) 0.59302 (15) 0.0531 (5)
N1 0.4407 (2) 0.45896 (19) 0.29274 (15) 0.0356 (4)
N2 0.6801 (2) 0.6028 (2) 0.24547 (15) 0.0384 (4)
C1 0.8713 (3) 0.3669 (3) 0.5099 (2) 0.0539 (7)
H1 0.9750 0.3677 0.5258 0.065*
C2 0.7895 (3) 0.2585 (3) 0.5693 (2) 0.0490 (6)
C3 0.8710 (4) 0.1578 (3) 0.6437 (3) 0.0797 (10)
H3 0.9760 0.1654 0.6530 0.096*
C4 0.7985 (5) 0.0514 (3) 0.7010 (3) 0.0935 (13)
H4 0.8532 −0.0131 0.7499 0.112*
C5 0.6424 (4) 0.0376 (3) 0.6871 (2) 0.0711 (9)
H5 0.5940 −0.0367 0.7267 0.085*
C6 0.5578 (3) 0.1319 (2) 0.6157 (2) 0.0462 (6)
C7 0.6294 (3) 0.2479 (2) 0.55657 (18) 0.0390 (5)
C8 0.3359 (4) 0.0033 (3) 0.6415 (2) 0.0662 (8)
H8A 0.4119 −0.0814 0.6251 0.099*
H8B 0.2399 0.0015 0.6094 0.099*
H8C 0.3075 0.0084 0.7225 0.099*
C9 0.3265 (3) 0.3750 (3) 0.3212 (2) 0.0416 (5)
H9 0.3278 0.3148 0.3870 0.050*
C10 0.2074 (3) 0.3751 (3) 0.2563 (2) 0.0503 (6)
H10 0.1300 0.3151 0.2774 0.060*
C11 0.2044 (3) 0.4647 (3) 0.1599 (2) 0.0544 (7)
H11 0.1239 0.4668 0.1154 0.065*
C12 0.3211 (3) 0.5518 (3) 0.1291 (2) 0.0512 (6)
H12 0.3208 0.6129 0.0637 0.061*
C13 0.4388 (3) 0.5464 (2) 0.19728 (18) 0.0380 (5)
C14 0.5734 (3) 0.6303 (2) 0.17170 (18) 0.0393 (5)
C15 0.5939 (4) 0.7291 (3) 0.0798 (2) 0.0557 (7)
H15 0.5181 0.7493 0.0304 0.067*
C16 0.7279 (4) 0.7967 (3) 0.0627 (2) 0.0634 (8)
H16 0.7435 0.8629 0.0011 0.076*
C17 0.8374 (4) 0.7669 (3) 0.1357 (2) 0.0594 (7)
H17 0.9291 0.8113 0.1244 0.071*
C18 0.8102 (3) 0.6699 (3) 0.2267 (2) 0.0484 (6)
H18 0.8848 0.6500 0.2770 0.058*
Cl 0.82646 (7) 0.24175 (6) 0.14548 (5) 0.04118 (15)
O4 0.8132 (2) 0.2621 (2) 0.26486 (14) 0.0597 (5)
O5 0.6696 (2) 0.2285 (2) 0.12270 (17) 0.0753 (6)
O6 0.8814 (3) 0.3620 (2) 0.07874 (16) 0.0652 (5)
O7 0.9370 (3) 0.1160 (2) 0.11921 (17) 0.0757 (6)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Ni1 0.03248 (17) 0.03601 (17) 0.03033 (16) −0.01101 (12) −0.01119 (11) 0.00581 (11)
O1 0.0452 (10) 0.0571 (11) 0.0506 (10) −0.0154 (8) −0.0172 (8) −0.0019 (9)
O2 0.0396 (9) 0.0392 (9) 0.0400 (9) −0.0051 (7) −0.0130 (7) 0.0092 (7)
O3 0.0633 (12) 0.0395 (10) 0.0524 (10) −0.0135 (9) 0.0016 (9) 0.0073 (8)
N1 0.0376 (10) 0.0365 (10) 0.0333 (9) −0.0057 (8) −0.0090 (8) 0.0003 (8)
N2 0.0423 (11) 0.0382 (11) 0.0351 (10) −0.0104 (9) −0.0028 (8) −0.0029 (8)
C1 0.0450 (15) 0.0599 (17) 0.0627 (17) −0.0026 (13) −0.0254 (13) −0.0138 (14)
C2 0.0554 (16) 0.0417 (14) 0.0545 (15) 0.0006 (12) −0.0293 (13) −0.0036 (12)
C3 0.087 (2) 0.059 (2) 0.104 (3) 0.0030 (18) −0.065 (2) 0.0011 (19)
C4 0.133 (3) 0.053 (2) 0.109 (3) −0.004 (2) −0.084 (3) 0.0223 (19)
C5 0.116 (3) 0.0403 (16) 0.0610 (18) −0.0093 (17) −0.0372 (18) 0.0122 (13)
C6 0.0663 (17) 0.0351 (13) 0.0367 (12) −0.0047 (12) −0.0126 (12) 0.0014 (10)
C7 0.0525 (14) 0.0325 (12) 0.0317 (11) 0.0029 (11) −0.0144 (10) −0.0039 (9)
C8 0.090 (2) 0.0397 (15) 0.0617 (18) −0.0221 (15) 0.0168 (16) 0.0003 (13)
C9 0.0405 (13) 0.0436 (14) 0.0427 (13) −0.0110 (11) −0.0101 (10) 0.0012 (11)
C10 0.0427 (14) 0.0594 (17) 0.0530 (15) −0.0150 (13) −0.0107 (12) −0.0059 (13)
C11 0.0469 (15) 0.0707 (19) 0.0503 (15) −0.0073 (14) −0.0226 (12) −0.0046 (14)
C12 0.0531 (15) 0.0616 (17) 0.0414 (14) −0.0082 (13) −0.0201 (12) 0.0045 (12)
C13 0.0421 (13) 0.0389 (12) 0.0320 (11) −0.0016 (10) −0.0085 (10) −0.0009 (10)
C14 0.0454 (14) 0.0381 (13) 0.0330 (11) −0.0040 (11) −0.0050 (10) −0.0019 (10)
C15 0.0692 (18) 0.0561 (17) 0.0394 (14) −0.0127 (14) −0.0074 (13) 0.0109 (12)
C16 0.082 (2) 0.0588 (18) 0.0454 (15) −0.0230 (16) 0.0032 (15) 0.0125 (13)
C17 0.0655 (19) 0.0593 (18) 0.0523 (16) −0.0256 (15) 0.0086 (14) −0.0028 (14)
C18 0.0479 (14) 0.0509 (15) 0.0484 (14) −0.0199 (12) −0.0002 (11) −0.0046 (12)
Cl 0.0437 (3) 0.0428 (3) 0.0378 (3) −0.0086 (3) −0.0106 (2) 0.0041 (2)
O4 0.0798 (13) 0.0620 (12) 0.0386 (9) −0.0123 (10) −0.0148 (9) 0.0014 (9)
O5 0.0592 (12) 0.1022 (17) 0.0741 (14) −0.0325 (12) −0.0310 (10) 0.0178 (12)
O6 0.0829 (14) 0.0616 (12) 0.0546 (11) −0.0305 (11) −0.0136 (10) 0.0177 (9)
O7 0.0816 (15) 0.0588 (13) 0.0725 (14) 0.0163 (11) 0.0001 (11) −0.0044 (11)

Geometric parameters (Å, °)

Ni1—O2 1.8932 (15) C8—H8B 0.9600
Ni1—O1 1.9580 (16) C8—H8C 0.9600
Ni1—N2 1.9783 (19) C9—C10 1.374 (3)
Ni1—N1 1.9828 (18) C9—H9 0.9300
O1—C1 1.255 (3) C10—C11 1.370 (3)
O2—C7 1.310 (3) C10—H10 0.9300
O3—C6 1.351 (3) C11—C12 1.379 (4)
O3—C8 1.439 (3) C11—H11 0.9300
N1—C9 1.339 (3) C12—C13 1.384 (3)
N1—C13 1.349 (3) C12—H12 0.9300
N2—C18 1.343 (3) C13—C14 1.476 (3)
N2—C14 1.346 (3) C14—C15 1.386 (3)
C1—C2 1.412 (4) C15—C16 1.374 (4)
C1—H1 0.9300 C15—H15 0.9300
C2—C7 1.410 (3) C16—C17 1.359 (4)
C2—C3 1.421 (4) C16—H16 0.9300
C3—C4 1.348 (5) C17—C18 1.374 (3)
C3—H3 0.9300 C17—H17 0.9300
C4—C5 1.388 (5) C18—H18 0.9300
C4—H4 0.9300 Cl—O7 1.4194 (19)
C5—C6 1.378 (4) Cl—O5 1.4284 (19)
C5—H5 0.9300 Cl—O6 1.4336 (18)
C6—C7 1.425 (3) Cl—O4 1.4418 (17)
C8—H8A 0.9600
O2—Ni1—O1 92.24 (7) O3—C8—H8C 109.5
O2—Ni1—N2 171.66 (7) H8A—C8—H8C 109.5
O1—Ni1—N2 94.93 (7) H8B—C8—H8C 109.5
O2—Ni1—N1 91.43 (7) N1—C9—C10 122.1 (2)
O1—Ni1—N1 174.35 (7) N1—C9—H9 119.0
N2—Ni1—N1 81.75 (8) C10—C9—H9 119.0
C1—O1—Ni1 122.66 (17) C11—C10—C9 119.0 (2)
C7—O2—Ni1 125.39 (15) C11—C10—H10 120.5
C6—O3—C8 116.8 (2) C9—C10—H10 120.5
C9—N1—C13 119.0 (2) C10—C11—C12 119.7 (2)
C9—N1—Ni1 126.47 (15) C10—C11—H11 120.1
C13—N1—Ni1 114.47 (15) C12—C11—H11 120.1
C18—N2—C14 118.7 (2) C11—C12—C13 118.7 (2)
C18—N2—Ni1 126.43 (17) C11—C12—H12 120.7
C14—N2—Ni1 114.84 (15) C13—C12—H12 120.7
O1—C1—C2 128.7 (2) N1—C13—C12 121.5 (2)
O1—C1—H1 115.7 N1—C13—C14 114.52 (19)
C2—C1—H1 115.7 C12—C13—C14 124.0 (2)
C7—C2—C1 121.7 (2) N2—C14—C15 121.0 (2)
C7—C2—C3 119.4 (3) N2—C14—C13 114.38 (19)
C1—C2—C3 119.0 (3) C15—C14—C13 124.6 (2)
C4—C3—C2 121.0 (3) C16—C15—C14 119.1 (3)
C4—C3—H3 119.5 C16—C15—H15 120.4
C2—C3—H3 119.5 C14—C15—H15 120.4
C3—C4—C5 120.2 (3) C17—C16—C15 119.9 (3)
C3—C4—H4 119.9 C17—C16—H16 120.0
C5—C4—H4 119.9 C15—C16—H16 120.0
C6—C5—C4 121.3 (3) C16—C17—C18 118.8 (3)
C6—C5—H5 119.4 C16—C17—H17 120.6
C4—C5—H5 119.4 C18—C17—H17 120.6
O3—C6—C5 126.1 (3) N2—C18—C17 122.4 (3)
O3—C6—C7 114.1 (2) N2—C18—H18 118.8
C5—C6—C7 119.8 (3) C17—C18—H18 118.8
O2—C7—C2 123.6 (2) O7—Cl—O5 109.87 (14)
O2—C7—C6 118.2 (2) O7—Cl—O6 110.45 (13)
C2—C7—C6 118.3 (2) O5—Cl—O6 109.20 (12)
O3—C8—H8A 109.5 O7—Cl—O4 109.12 (12)
O3—C8—H8B 109.5 O5—Cl—O4 108.41 (12)
H8A—C8—H8B 109.5 O6—Cl—O4 109.75 (11)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C4—H4···O7i 0.93 2.58 3.461 (4) 159
C12—H12···O5ii 0.93 2.57 3.499 (3) 177
C15—H15···O5ii 0.93 2.59 3.517 (3) 171

Symmetry codes: (i) −x+2, −y, −z+1; (ii) −x+1, −y+1, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DN2410).

References

  1. Alizadeh, N., Ershad, S., Naeimi, H., Sharghi, H. & Shamsipur, M. (1999). Pol. J. Chem.73, 915–925.
  2. Bruker (2004). APEX2 and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
  4. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  5. Hamblin, J., Childs, L. J., Alcock, N. W. & Hannon, M. J. (2002). J. Chem. Soc. Dalton Trans. pp. 164–169.
  6. Liu, W. L., Ye, L. F., Liu, X. F., Yuan, L. M., Jiang, J. X. & Yan, C. G. (2008). CrystEngComm, 10, 1395–1403.
  7. Minuti, L., Taticchi, A., Marrocchi, A., Gacs-Baitz, E. & Galeazzi, R. (1999). Eur. J. Org. Chem. pp. 3155–3163.
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808040385/dn2410sup1.cif

e-65-00m11-sup1.cif (18.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808040385/dn2410Isup2.hkl

e-65-00m11-Isup2.hkl (165.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES