Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Dec 6;65(Pt 1):m13. doi: 10.1107/S1600536808040312

Bis[4-(dimethyl­amino)pyridinium] 3.75-bromido-0.25-chloridodiphenyl­plumbate(IV)

Kong Mun Lo a, Seik Weng Ng a,*
PMCID: PMC2967864  PMID: 21581489

Abstract

The PbIV atom of the plumbate dianion in the title compound, (C7H11N)2[Pb(Br3.75Cl0.25)(C6H5)2], lies on a centre of inversion in a tetra­gonally compressed octa­hedral geometry. One of the attached Br atoms is disordered with respect to a Cl atom in a 7:1 ratio. The disordered halogen atom is an N—H⋯(Br/Cl) hydrogen-bond acceptor for the cation.

Related literature

For the structure of the isostructural compound bis­(4-di­methyl­amino­pyridinium) tetra­bromidodiphenyl­plumbate(IV), see: Lo & Ng (2008).graphic file with name e-65-00m13-scheme1.jpg

Experimental

Crystal data

  • (C7H11N)2[Pb(Br3.75Cl0.25)(C6H5)2]

  • M r = 916.27

  • Monoclinic, Inline graphic

  • a = 9.5010 (2) Å

  • b = 13.8916 (3) Å

  • c = 10.9851 (2) Å

  • β = 92.996 (1)°

  • V = 1447.88 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 11.05 mm−1

  • T = 100 (2) K

  • 0.12 × 0.11 × 0.10 mm

Data collection

  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.351, T max = 0.405 (expected range = 0.287–0.331)

  • 10028 measured reflections

  • 3327 independent reflections

  • 2909 reflections with I > 2σ(I)

  • R int = 0.028

Refinement

  • R[F 2 > 2σ(F 2)] = 0.022

  • wR(F 2) = 0.048

  • S = 1.02

  • 3327 reflections

  • 166 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.77 e Å−3

  • Δρmin = −0.52 e Å−3

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2008).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808040312/hb2863sup1.cif

e-65-00m13-sup1.cif (17.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808040312/hb2863Isup2.hkl

e-65-00m13-Isup2.hkl (163.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected bond lengths (Å).

X = Br, Cl.

Pb1—C1 2.184 (3)
Pb1—X1 2.8523 (3)
Pb1—Br2 2.8885 (3)

Table 2. Hydrogen-bond geometry (Å, °).

X = Br, Cl.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯X1 0.87 (1) 2.49 (2) 3.260 (3) 148 (4)

Acknowledgments

We thank the University of Malaya for funding this study (grant No. FS339/2008A) for the purchase of the diffractometer.

supplementary crystallographic information

Experimental

Diphenyllead dichloride (1.3 g, 3 mmol) and 4-dimethylaminopyridine hydrobromide perbromide (1.1 g, 3 mmol) were heated in chloroform (100 ml) for an hour. The filtered solution when allowed to evaporate yielded large colorless crystals of (I).

Refinement

The carbon-bound H-atoms were placed in calculated positions (C—H = 0.95–0.98 Å) and refined as riding with Uiso(H) = 1.2 to 1.5Ueq(C). The ammonium H atom was located in a difference Fourier map, and was refined with a distance constraint of N—H = 0.88 (1) Å; its Uiso value was refined.

The two independent halogen atoms were initially refined as full-occupancy Br atoms; however, the difference Fourier map had a deep hole near one of the two. When this atom was allowed to refine as a mixture of bromine and chlorine, the refinement converged, and it gave the Br:Cl ratio as 0.88:0.12. The ratio was subsequently fixed as 0.875:0.125. Attempts to model the Br and Cl atoms on separate sites were not successful.

The published (C7H11N)2[PbBr4(C6H5)2] structure (Lo & Ng, 2008) does not contain any chlorine as the compound was synthesized by the cleavage of tetraphenyllead by 4-aminomethylpyridine hydrobromide perbromide.

Figures

Fig. 1.

Fig. 1.

View of the molecular structure of (I) at the 70% probability level. H atoms are drawn as spheres of arbitrary radius. Unlabelled atoms in the anion are generated by the symmetry operation (1 - x, 1 - y, 1 - z).

Crystal data

(C7H11N)2[PbBr3.75(C6H5)2Cl0.25] F(000) = 867
Mr = 916.27 Dx = 2.102 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 4255 reflections
a = 9.5010 (2) Å θ = 2.4–28.4°
b = 13.8916 (3) Å µ = 11.05 mm1
c = 10.9851 (2) Å T = 100 K
β = 92.996 (1)° Faceted block, colourless
V = 1447.88 (5) Å3 0.12 × 0.11 × 0.10 mm
Z = 2

Data collection

Bruker SMART APEX CCD diffractometer 3327 independent reflections
Radiation source: fine-focus sealed tube 2909 reflections with I > 2σ(I)
graphite Rint = 0.028
ω scans θmax = 27.5°, θmin = 2.4°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) h = −12→12
Tmin = 0.351, Tmax = 0.405 k = −15→18
10028 measured reflections l = −14→14

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.022 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.048 H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0227P)2 + 0.2619P] where P = (Fo2 + 2Fc2)/3
3327 reflections (Δ/σ)max = 0.001
166 parameters Δρmax = 0.77 e Å3
1 restraint Δρmin = −0.52 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Pb1 0.5000 0.5000 0.5000 0.01182 (5)
Br1 0.55819 (4) 0.61268 (2) 0.29147 (3) 0.01476 (8) 0.875
Br2 0.76221 (3) 0.40251 (2) 0.46037 (3) 0.01660 (8)
Cl1 0.55819 (4) 0.61268 (2) 0.29147 (3) 0.01476 (8) 0.125
N1 0.8894 (3) 0.5871 (2) 0.2345 (3) 0.0224 (7)
H1 0.815 (3) 0.582 (3) 0.277 (3) 0.042 (13)*
N2 1.1998 (3) 0.59111 (19) −0.0113 (2) 0.0173 (6)
C1 0.6143 (3) 0.6021 (2) 0.6197 (3) 0.0138 (6)
C2 0.7445 (3) 0.6367 (2) 0.5890 (3) 0.0152 (7)
H2 0.7856 0.6156 0.5167 0.018*
C3 0.8144 (4) 0.7030 (2) 0.6660 (3) 0.0198 (7)
H3 0.9040 0.7271 0.6465 0.024*
C4 0.7533 (4) 0.7336 (2) 0.7709 (3) 0.0191 (7)
H4 0.8009 0.7790 0.8229 0.023*
C5 0.6228 (4) 0.6982 (2) 0.8003 (3) 0.0204 (7)
H5 0.5814 0.7194 0.8724 0.024*
C6 0.5527 (4) 0.6321 (2) 0.7248 (3) 0.0163 (7)
H6 0.4635 0.6076 0.7448 0.020*
C7 1.0060 (4) 0.5338 (3) 0.2555 (3) 0.0208 (7)
H7 1.0141 0.4941 0.3260 0.025*
C8 1.1124 (4) 0.5356 (2) 0.1781 (3) 0.0189 (7)
H8 1.1945 0.4980 0.1953 0.023*
C9 1.1019 (3) 0.5933 (2) 0.0715 (3) 0.0146 (7)
C10 0.9798 (4) 0.6523 (2) 0.0576 (3) 0.0189 (7)
H10 0.9701 0.6959 −0.0089 0.023*
C11 0.8778 (4) 0.6469 (2) 0.1382 (3) 0.0220 (8)
H11 0.7962 0.6860 0.1267 0.026*
C12 1.3282 (4) 0.5343 (3) 0.0091 (3) 0.0225 (7)
H12A 1.3034 0.4683 0.0313 0.034*
H12B 1.3872 0.5632 0.0752 0.034*
H12C 1.3803 0.5332 −0.0656 0.034*
C13 1.1938 (4) 0.6535 (3) −0.1175 (3) 0.0267 (8)
H13A 1.0952 0.6658 −0.1434 0.040*
H13B 1.2414 0.6222 −0.1840 0.040*
H13C 1.2409 0.7146 −0.0970 0.040*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Pb1 0.01154 (9) 0.01443 (9) 0.00939 (8) −0.00187 (6) −0.00034 (6) −0.00126 (6)
Br1 0.01359 (18) 0.01750 (17) 0.01320 (16) 0.00047 (13) 0.00073 (13) 0.00243 (12)
Br2 0.01506 (17) 0.02009 (17) 0.01462 (16) 0.00203 (12) 0.00038 (12) −0.00043 (12)
Cl1 0.01359 (18) 0.01750 (17) 0.01320 (16) 0.00047 (13) 0.00073 (13) 0.00243 (12)
N1 0.0161 (17) 0.0309 (17) 0.0206 (16) −0.0016 (13) 0.0056 (12) −0.0050 (13)
N2 0.0201 (16) 0.0158 (14) 0.0162 (14) 0.0043 (11) 0.0029 (11) 0.0024 (11)
C1 0.0133 (17) 0.0130 (16) 0.0146 (16) −0.0008 (12) −0.0031 (12) 0.0003 (12)
C2 0.0157 (17) 0.0171 (16) 0.0127 (16) 0.0016 (13) −0.0020 (12) 0.0004 (12)
C3 0.0186 (19) 0.0201 (18) 0.0204 (18) −0.0036 (14) −0.0008 (14) 0.0032 (13)
C4 0.024 (2) 0.0171 (18) 0.0156 (17) −0.0024 (14) −0.0081 (14) −0.0015 (13)
C5 0.029 (2) 0.0191 (18) 0.0133 (16) −0.0003 (14) −0.0015 (14) −0.0027 (13)
C6 0.0147 (18) 0.0197 (17) 0.0143 (16) 0.0007 (13) −0.0017 (13) 0.0031 (13)
C7 0.022 (2) 0.0252 (18) 0.0149 (17) −0.0029 (15) 0.0004 (14) −0.0010 (14)
C8 0.0188 (18) 0.0211 (17) 0.0170 (17) 0.0021 (14) 0.0014 (13) −0.0004 (13)
C9 0.0158 (17) 0.0164 (16) 0.0113 (15) −0.0013 (12) −0.0011 (12) −0.0051 (12)
C10 0.0213 (19) 0.0171 (17) 0.0183 (18) 0.0024 (14) −0.0009 (14) −0.0008 (13)
C11 0.0188 (19) 0.0229 (19) 0.0242 (19) 0.0047 (14) −0.0015 (14) −0.0052 (14)
C12 0.0190 (19) 0.0306 (19) 0.0180 (18) 0.0059 (15) 0.0027 (14) 0.0008 (15)
C13 0.032 (2) 0.028 (2) 0.0203 (19) 0.0065 (16) 0.0057 (16) 0.0057 (15)

Geometric parameters (Å, °)

Pb1—C1i 2.184 (3) C4—C5 1.388 (5)
Pb1—C1 2.184 (3) C4—H4 0.9500
Pb1—Br1 2.8523 (3) C5—C6 1.385 (4)
Pb1—Cl1i 2.8523 (3) C5—H5 0.9500
Pb1—Br1i 2.8523 (3) C6—H6 0.9500
Pb1—Br2 2.8885 (3) C7—C8 1.355 (4)
Pb1—Br2i 2.8885 (3) C7—H7 0.9500
N1—C7 1.342 (5) C8—C9 1.419 (4)
N1—C11 1.345 (5) C8—H8 0.9500
N1—H1 0.87 (1) C9—C10 1.421 (4)
N2—C9 1.335 (4) C10—C11 1.348 (5)
N2—C13 1.452 (4) C10—H10 0.9500
N2—C12 1.461 (4) C11—H11 0.9500
C1—C6 1.385 (4) C12—H12A 0.9800
C1—C2 1.385 (4) C12—H12B 0.9800
C2—C3 1.395 (4) C12—H12C 0.9800
C2—H2 0.9500 C13—H13A 0.9800
C3—C4 1.383 (4) C13—H13B 0.9800
C3—H3 0.9500 C13—H13C 0.9800
C1i—Pb1—C1 180.00 (12) C3—C4—C5 120.2 (3)
C1i—Pb1—Br1 89.09 (8) C3—C4—H4 119.9
C1—Pb1—Br1 90.91 (8) C5—C4—H4 119.9
C1i—Pb1—Cl1i 90.91 (8) C6—C5—C4 120.2 (3)
C1—Pb1—Cl1i 89.09 (8) C6—C5—H5 119.9
Br1—Pb1—Cl1i 180.0 C4—C5—H5 119.9
C1i—Pb1—Br1i 90.91 (8) C5—C6—C1 119.2 (3)
C1—Pb1—Br1i 89.09 (8) C5—C6—H6 120.4
Br1—Pb1—Br1i 180.0 C1—C6—H6 120.4
Cl1i—Pb1—Br1i 0.000 (17) N1—C7—C8 121.2 (3)
C1i—Pb1—Br2 90.60 (8) N1—C7—H7 119.4
C1—Pb1—Br2 89.40 (8) C8—C7—H7 119.4
Br1—Pb1—Br2 86.065 (9) C7—C8—C9 120.4 (3)
Cl1i—Pb1—Br2 93.935 (9) C7—C8—H8 119.8
Br1i—Pb1—Br2 93.935 (9) C9—C8—H8 119.8
C1i—Pb1—Br2i 89.40 (8) N2—C9—C8 121.9 (3)
C1—Pb1—Br2i 90.60 (8) N2—C9—C10 122.3 (3)
Br1—Pb1—Br2i 93.935 (9) C8—C9—C10 115.9 (3)
Cl1i—Pb1—Br2i 86.065 (9) C11—C10—C9 120.5 (3)
Br1i—Pb1—Br2i 86.065 (9) C11—C10—H10 119.7
Br2—Pb1—Br2i 180.0 C9—C10—H10 119.7
C7—N1—C11 120.6 (3) N1—C11—C10 121.2 (3)
C7—N1—H1 124 (3) N1—C11—H11 119.4
C11—N1—H1 116 (3) C10—C11—H11 119.4
C9—N2—C13 122.3 (3) N2—C12—H12A 109.5
C9—N2—C12 120.9 (3) N2—C12—H12B 109.5
C13—N2—C12 116.3 (3) H12A—C12—H12B 109.5
C6—C1—C2 121.3 (3) N2—C12—H12C 109.5
C6—C1—Pb1 118.6 (2) H12A—C12—H12C 109.5
C2—C1—Pb1 120.1 (2) H12B—C12—H12C 109.5
C1—C2—C3 119.0 (3) N2—C13—H13A 109.5
C1—C2—H2 120.5 N2—C13—H13B 109.5
C3—C2—H2 120.5 H13A—C13—H13B 109.5
C4—C3—C2 120.1 (3) N2—C13—H13C 109.5
C4—C3—H3 120.0 H13A—C13—H13C 109.5
C2—C3—H3 120.0 H13B—C13—H13C 109.5
Br1—Pb1—C1—C6 133.5 (2) C4—C5—C6—C1 −0.2 (5)
Cl1i—Pb1—C1—C6 −46.5 (2) C2—C1—C6—C5 0.2 (5)
Br1i—Pb1—C1—C6 −46.5 (2) Pb1—C1—C6—C5 −178.8 (2)
Br2—Pb1—C1—C6 −140.4 (2) C11—N1—C7—C8 −2.8 (5)
Br2i—Pb1—C1—C6 39.6 (2) N1—C7—C8—C9 −0.8 (5)
Br1—Pb1—C1—C2 −45.5 (2) C13—N2—C9—C8 −176.7 (3)
Cl1i—Pb1—C1—C2 134.5 (2) C12—N2—C9—C8 −4.9 (5)
Br1i—Pb1—C1—C2 134.5 (2) C13—N2—C9—C10 4.3 (5)
Br2—Pb1—C1—C2 40.6 (2) C12—N2—C9—C10 176.2 (3)
Br2i—Pb1—C1—C2 −139.4 (2) C7—C8—C9—N2 −174.7 (3)
C6—C1—C2—C3 0.0 (5) C7—C8—C9—C10 4.3 (5)
Pb1—C1—C2—C3 179.0 (2) N2—C9—C10—C11 174.6 (3)
C1—C2—C3—C4 −0.3 (5) C8—C9—C10—C11 −4.4 (5)
C2—C3—C4—C5 0.3 (5) C7—N1—C11—C10 2.6 (5)
C3—C4—C5—C6 −0.1 (5) C9—C10—C11—N1 1.1 (5)

Symmetry codes: (i) −x+1, −y+1, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1···Br1 0.87 (1) 2.49 (2) 3.260 (3) 148 (4)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB2863).

References

  1. Barbour, L. J. (2001). J. Supramol. Chem.1, 189–191.
  2. Bruker (2007). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Lo, K. M. & Ng, S. W. (2008). Acta Cryst. E64, m1222. [DOI] [PMC free article] [PubMed]
  4. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  6. Westrip, S. P. (2008). publCIF In preparation.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808040312/hb2863sup1.cif

e-65-00m13-sup1.cif (17.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808040312/hb2863Isup2.hkl

e-65-00m13-Isup2.hkl (163.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES