Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Dec 6;65(Pt 1):m22. doi: 10.1107/S160053680804035X

Bis[μ-3-ethyl-4-phenyl-5-(2-pyrid­yl)-4H-1,2,4-triazole]bis­[dichloridocopper(II)]

Zuoxiang Wang a,*, Chunyi Liu a, Xiaoming Zhang a, Xiaoning Gong a
PMCID: PMC2967870  PMID: 21581496

Abstract

The asymmetric unit of the title compound, [Cu2Cl4(C15H14N4)2], contains two halves of two centrosymmetric dinuclear mol­ecules, A and B. The conformations of the two crystallographically independent mol­ecules are slightly different: in A, the Cu⋯Cu separation is 4.174 (9) Å and the dihedral angle between the triazole and phenyl rings is 74.23 (11)°; these values are 4.137 (9) Å and 68.58 (13)°, respectively, in B. In each mol­ecule, the copper(II) ions have a distorted trigonal–bipyramidal coordination geometry with a CuCl2NN′N′′ chromophore. The crystal packing exhibits weak inter­molecular C—H⋯Cl inter­actions.

Related literature

For the magnetic and spin-crossover properties of 1,2,4-triazole complexes, see: Kahn & Martinez (1998); Klingele et al. (2005); Matouzenko et al. (2004); Moliner et al. (2001); For the fluorescent properties of 1,2,4-triazole complexes, see: Chen et al. (2008); Matsukizono et al. (2008).graphic file with name e-65-00m22-scheme1.jpg

Experimental

Crystal data

  • [Cu2Cl4(C15H14N4)2]

  • M r = 769.48

  • Triclinic, Inline graphic

  • a = 9.3395 (11) Å

  • b = 12.8096 (14) Å

  • c = 13.9234 (16) Å

  • α = 92.533 (2)°

  • β = 94.596 (2)°

  • γ = 90.452 (2)°

  • V = 1658.6 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.64 mm−1

  • T = 273 (2) K

  • 0.30 × 0.26 × 0.24 mm

Data collection

  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000) T min = 0.62, T max = 0.68

  • 8289 measured reflections

  • 5716 independent reflections

  • 4065 reflections with I > 2σ(I)

  • R int = 0.032

Refinement

  • R[F 2 > 2σ(F 2)] = 0.044

  • wR(F 2) = 0.069

  • S = 1.05

  • 5716 reflections

  • 399 parameters

  • H-atom parameters constrained

  • Δρmax = 0.55 e Å−3

  • Δρmin = −0.40 e Å−3

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S160053680804035X/cv2472sup1.cif

e-65-00m22-sup1.cif (23.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S160053680804035X/cv2472Isup2.hkl

e-65-00m22-Isup2.hkl (279.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4⋯Cl2i 0.93 2.78 3.445 (4) 129
C15—H15⋯Cl3ii 0.93 2.78 3.579 (4) 145
C16—H16⋯Cl1iii 0.93 2.76 3.518 (4) 139
C19—H19⋯Cl4iv 0.93 2.69 3.365 (4) 130

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Acknowledgments

We are grateful to Jingye Pharmachemical Pilot Plant for financial assistance though project No. 8507041056.

supplementary crystallographic information

Comment

As the 1,2,4-triazole ring posesses strong electron donors and coordination capability to transition metal ions, the coordination chemistry of 1,2,4-triazole derivatives has gained great attention in recent years (Klingele et al., 2005; Chen et al., 2008; Matsukizono et al., 2008). Some complexes of 1,2,4-triazoles with iron(II) have spin-crossover properties, which can be used as molecular-based memory devices, displays and optical switches (Kahn & Martinez, 1998; Moliner et al., 2001; Matouzenko et al., 2004). We report here the crystal structure analysis of the title compound, (I) (Fig. 1).

The asymmetric unit of the title compound contains two halves of two centrosymmetric dinuclear molecules, A and B, respectively. In A, the dihedral angle between the triazole and pyridine rings is 11.21 (16)°, and that between the triazole and benzene rings is 74.22 (11)°; those values in B are 9.02 (16)° and 68.58 (13)°, respectively.

The crystal packing exhibits weak intermolecular C—H···Cl interactions (Table 1).

Experimental

The title compound was prepared by reaction of 3-ethyl-4-phenyl-5-(2-pyridyl)-1,2,4-triazole with copper(II) chloride in ethanol and water. To a warm solution of 0.501 grams of 3-ethyl-4-phenyl-5-(2-pyridyl)-1,2,4-triazole (2.0 mmol) in 10 ml e thanol, 0.682 grams of copper(II) chloride dihydrate (4.0 mmol) in 10 ml water was added. The filtrate was left to stand at room temperature for several days, and single crystals suitable for X-ray diffraction were collected.

Refinement

All H atoms were first located in a difference Fourier map, but placed in idealized positions (C—H = 0.93 (aromatic), 0.96 (methyl) or 0.97 Å (methylene)), and allowed to ride on their parent atoms with Uiso(H) values of 1.2 or 1.5 times Ueq(C).

Figures

Fig. 1.

Fig. 1.

View of (I) with the atomic labelling and 30% probability displacement ellipsoids [symmetry codes: (i) -x + 1,-y + 2,-z; (ii) -x,-y + 1,-z + 1.

Crystal data

[Cu2Cl4(C15H14N4)2] Z = 2
Mr = 769.48 F(000) = 780
Triclinic, P1 Dx = 1.541 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 9.3395 (11) Å Cell parameters from 2456 reflections
b = 12.8096 (14) Å θ = 2.2–24.2°
c = 13.9234 (16) Å µ = 1.64 mm1
α = 92.533 (2)° T = 273 K
β = 94.596 (2)° Block, green
γ = 90.452 (2)° 0.30 × 0.26 × 0.24 mm
V = 1658.6 (3) Å3

Data collection

Bruker SMART APEX CCD area-detector diffractometer 5716 independent reflections
Radiation source: sealed tube 4065 reflections with I > 2σ(I)
graphite Rint = 0.032
φ and ω scans θmax = 25.0°, θmin = 2.1°
Absorption correction: multi-scan (SADABS; Bruker, 2000) h = −9→11
Tmin = 0.62, Tmax = 0.68 k = −15→10
8289 measured reflections l = −16→16

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.069 H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.01P)2] where P = (Fo2 + 2Fc2)/3
5716 reflections (Δ/σ)max = 0.004
399 parameters Δρmax = 0.55 e Å3
0 restraints Δρmin = −0.40 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F^2^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The threshold expression of F^2^ > σ(F^2^) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cu1 0.61708 (5) 0.91845 (3) −0.09989 (3) 0.04319 (14)
Cu2 0.14043 (5) 0.57176 (3) 0.60559 (3) 0.04375 (14)
Cl1 0.52503 (13) 0.75357 (7) −0.12247 (7) 0.0706 (4)
Cl2 0.71352 (11) 1.02338 (8) −0.20518 (8) 0.0645 (3)
Cl3 0.05265 (12) 0.73248 (7) 0.64432 (7) 0.0655 (3)
Cl4 0.25757 (11) 0.44618 (8) 0.68906 (8) 0.0663 (3)
N1 0.8159 (3) 0.8654 (2) −0.0588 (2) 0.0443 (8)
N2 0.6455 (3) 0.9681 (2) 0.05218 (19) 0.0379 (7)
N3 0.5746 (3) 1.0170 (2) 0.1247 (2) 0.0402 (8)
N4 0.7742 (3) 0.9542 (2) 0.1897 (2) 0.0377 (7)
N5 0.3290 (3) 0.6315 (2) 0.5707 (2) 0.0428 (8)
N6 0.1338 (3) 0.5377 (2) 0.45041 (19) 0.0381 (7)
N7 0.0455 (3) 0.4958 (2) 0.3749 (2) 0.0388 (8)
N8 0.2338 (3) 0.5611 (2) 0.3164 (2) 0.0401 (8)
C1 0.9021 (5) 0.8246 (3) −0.1216 (3) 0.0562 (11)
H1 0.8662 0.8134 −0.1855 0.067*
C2 1.0420 (4) 0.7983 (3) −0.0963 (3) 0.0551 (11)
H2 1.0988 0.7685 −0.1419 0.066*
C3 1.0958 (4) 0.8167 (3) −0.0029 (3) 0.0557 (11)
H3 1.1909 0.8014 0.0159 0.067*
C4 1.0069 (4) 0.8582 (3) 0.0633 (3) 0.0500 (10)
H4 1.0406 0.8702 0.1276 0.060*
C5 0.8689 (4) 0.8814 (3) 0.0330 (3) 0.0384 (9)
C6 0.7641 (4) 0.9318 (2) 0.0928 (3) 0.0369 (9)
C7 0.6528 (4) 1.0085 (3) 0.2065 (3) 0.0394 (9)
C8 0.6207 (4) 1.0541 (3) 0.3019 (2) 0.0553 (11)
H8A 0.5369 1.0980 0.2930 0.066*
H8B 0.7007 1.0988 0.3268 0.066*
C9 0.5929 (5) 0.9754 (4) 0.3773 (3) 0.0924 (16)
H9A 0.5175 0.9280 0.3523 0.139*
H9B 0.5649 1.0117 0.4345 0.139*
H9C 0.6789 0.9370 0.3926 0.139*
C10 0.8771 (4) 0.9203 (3) 0.2639 (2) 0.0389 (9)
C11 0.8735 (4) 0.8180 (3) 0.2893 (3) 0.0533 (11)
H11 0.8095 0.7703 0.2565 0.064*
C12 0.9657 (5) 0.7877 (3) 0.3639 (3) 0.0658 (13)
H12 0.9645 0.7186 0.3816 0.079*
C13 1.0597 (5) 0.8572 (4) 0.4129 (3) 0.0666 (13)
H13 1.1212 0.8355 0.4639 0.080*
C14 1.0629 (4) 0.9590 (4) 0.3866 (3) 0.0593 (12)
H14 1.1270 1.0064 0.4196 0.071*
C15 0.9716 (4) 0.9910 (3) 0.3117 (3) 0.0464 (10)
H15 0.9737 1.0600 0.2936 0.056*
C16 0.4266 (4) 0.6705 (3) 0.6369 (3) 0.0557 (11)
H16 0.4034 0.6773 0.7006 0.067*
C17 0.5618 (5) 0.7017 (3) 0.6151 (3) 0.0618 (12)
H17 0.6275 0.7301 0.6630 0.074*
C18 0.5970 (5) 0.6905 (3) 0.5229 (3) 0.0628 (12)
H18 0.6884 0.7088 0.5070 0.075*
C19 0.4956 (4) 0.6514 (3) 0.4526 (3) 0.0579 (12)
H19 0.5170 0.6445 0.3885 0.069*
C20 0.3628 (4) 0.6231 (3) 0.4788 (3) 0.0423 (10)
C21 0.2472 (4) 0.5760 (2) 0.4143 (2) 0.0383 (9)
C22 0.1065 (4) 0.5101 (3) 0.2944 (3) 0.0407 (10)
C23 0.0445 (4) 0.4789 (3) 0.1960 (3) 0.0544 (11)
H23A −0.0399 0.4355 0.2013 0.065*
H23B 0.1139 0.4367 0.1642 0.065*
C24 0.0022 (5) 0.5691 (3) 0.1334 (3) 0.0805 (15)
H24A −0.0659 0.6120 0.1644 0.121*
H24B −0.0403 0.5424 0.0720 0.121*
H24C 0.0860 0.6101 0.1239 0.121*
C25 0.3299 (4) 0.5928 (3) 0.2453 (2) 0.0425 (10)
C26 0.3472 (4) 0.6965 (3) 0.2290 (3) 0.0548 (11)
H26 0.3004 0.7474 0.2641 0.066*
C27 0.4356 (5) 0.7235 (3) 0.1596 (3) 0.0691 (13)
H27 0.4487 0.7934 0.1469 0.083*
C28 0.5050 (5) 0.6471 (4) 0.1087 (3) 0.0734 (14)
H28 0.5646 0.6659 0.0617 0.088*
C29 0.4870 (5) 0.5437 (4) 0.1266 (3) 0.0655 (13)
H29 0.5344 0.4927 0.0921 0.079*
C30 0.3985 (4) 0.5157 (3) 0.1956 (3) 0.0522 (11)
H30 0.3854 0.4458 0.2085 0.063*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cu1 0.0498 (3) 0.0414 (3) 0.0382 (3) 0.0052 (2) 0.0051 (2) −0.0032 (2)
Cu2 0.0533 (3) 0.0406 (3) 0.0373 (3) −0.0008 (2) 0.0068 (2) −0.0036 (2)
Cl1 0.1114 (10) 0.0409 (6) 0.0567 (7) −0.0113 (6) −0.0079 (7) −0.0003 (5)
Cl2 0.0555 (7) 0.0697 (7) 0.0714 (8) −0.0007 (6) 0.0146 (6) 0.0207 (6)
Cl3 0.0942 (9) 0.0391 (6) 0.0654 (8) 0.0070 (6) 0.0238 (7) −0.0036 (5)
Cl4 0.0598 (7) 0.0617 (7) 0.0785 (8) 0.0086 (6) 0.0030 (6) 0.0178 (6)
N1 0.049 (2) 0.0439 (19) 0.040 (2) 0.0092 (15) 0.0050 (17) −0.0072 (16)
N2 0.043 (2) 0.0409 (19) 0.0296 (18) 0.0014 (15) 0.0044 (16) −0.0041 (14)
N3 0.045 (2) 0.0405 (19) 0.0354 (19) −0.0031 (15) 0.0071 (16) −0.0055 (15)
N4 0.042 (2) 0.0347 (18) 0.0361 (19) 0.0014 (15) 0.0034 (16) −0.0010 (14)
N5 0.047 (2) 0.0438 (19) 0.0367 (19) −0.0040 (15) 0.0073 (17) −0.0075 (15)
N6 0.045 (2) 0.0377 (18) 0.0317 (18) 0.0015 (15) 0.0046 (16) −0.0018 (14)
N7 0.045 (2) 0.0374 (18) 0.0343 (18) −0.0021 (14) 0.0062 (16) −0.0055 (15)
N8 0.055 (2) 0.0314 (17) 0.0344 (19) 0.0004 (15) 0.0110 (17) −0.0014 (14)
C1 0.068 (3) 0.062 (3) 0.038 (2) 0.013 (2) 0.002 (2) −0.009 (2)
C2 0.059 (3) 0.056 (3) 0.052 (3) 0.020 (2) 0.012 (2) −0.004 (2)
C3 0.052 (3) 0.057 (3) 0.059 (3) 0.015 (2) 0.007 (2) 0.003 (2)
C4 0.052 (3) 0.061 (3) 0.037 (2) 0.004 (2) 0.005 (2) 0.000 (2)
C5 0.042 (3) 0.034 (2) 0.039 (2) 0.0020 (18) 0.004 (2) −0.0001 (18)
C6 0.044 (3) 0.033 (2) 0.033 (2) −0.0031 (18) 0.003 (2) −0.0015 (18)
C7 0.042 (3) 0.041 (2) 0.035 (2) −0.0011 (19) 0.003 (2) 0.0021 (18)
C8 0.052 (3) 0.074 (3) 0.038 (2) 0.012 (2) 0.004 (2) −0.014 (2)
C9 0.096 (4) 0.141 (5) 0.044 (3) 0.022 (3) 0.022 (3) 0.018 (3)
C10 0.043 (2) 0.044 (2) 0.031 (2) 0.0070 (19) 0.0064 (19) 0.0028 (19)
C11 0.068 (3) 0.041 (3) 0.050 (3) 0.002 (2) 0.002 (2) 0.002 (2)
C12 0.083 (4) 0.049 (3) 0.068 (3) 0.018 (3) 0.012 (3) 0.017 (2)
C13 0.066 (3) 0.093 (4) 0.040 (3) 0.021 (3) −0.004 (2) 0.015 (3)
C14 0.055 (3) 0.079 (3) 0.042 (3) −0.002 (2) −0.001 (2) −0.007 (2)
C15 0.054 (3) 0.048 (2) 0.038 (2) 0.001 (2) 0.006 (2) 0.003 (2)
C16 0.062 (3) 0.064 (3) 0.041 (3) −0.010 (2) 0.006 (2) −0.009 (2)
C17 0.059 (3) 0.069 (3) 0.056 (3) −0.014 (2) −0.003 (2) −0.005 (2)
C18 0.052 (3) 0.072 (3) 0.066 (3) −0.014 (2) 0.012 (3) 0.001 (3)
C19 0.057 (3) 0.070 (3) 0.047 (3) −0.006 (2) 0.009 (2) −0.004 (2)
C20 0.048 (3) 0.037 (2) 0.043 (2) 0.0023 (19) 0.008 (2) −0.0002 (18)
C21 0.049 (3) 0.032 (2) 0.034 (2) 0.0051 (18) 0.005 (2) −0.0022 (17)
C22 0.053 (3) 0.031 (2) 0.039 (2) 0.0023 (18) 0.009 (2) −0.0044 (18)
C23 0.062 (3) 0.059 (3) 0.041 (3) −0.006 (2) 0.010 (2) −0.012 (2)
C24 0.107 (4) 0.090 (4) 0.043 (3) 0.000 (3) −0.008 (3) 0.015 (3)
C25 0.053 (3) 0.044 (2) 0.032 (2) 0.001 (2) 0.0100 (19) 0.0029 (18)
C26 0.067 (3) 0.041 (3) 0.059 (3) 0.000 (2) 0.012 (2) 0.006 (2)
C27 0.077 (4) 0.062 (3) 0.070 (3) −0.006 (3) 0.007 (3) 0.024 (3)
C28 0.070 (4) 0.108 (4) 0.044 (3) −0.005 (3) 0.013 (3) 0.018 (3)
C29 0.073 (3) 0.081 (4) 0.044 (3) 0.012 (3) 0.018 (2) −0.002 (2)
C30 0.069 (3) 0.050 (3) 0.039 (2) 0.007 (2) 0.013 (2) 0.001 (2)

Geometric parameters (Å, °)

Cu1—N3i 1.989 (3) C9—H9A 0.9600
Cu1—N1 2.029 (3) C9—H9B 0.9600
Cu1—N2 2.179 (3) C9—H9C 0.9600
Cu1—Cl2 2.2657 (11) C10—C15 1.372 (5)
Cu1—Cl1 2.2734 (10) C10—C11 1.374 (4)
Cu2—N7ii 1.977 (3) C11—C12 1.367 (5)
Cu2—N5 2.018 (3) C11—H11 0.9300
Cu2—N6 2.181 (3) C12—C13 1.366 (5)
Cu2—Cl4 2.2637 (12) C12—H12 0.9300
Cu2—Cl3 2.2804 (11) C13—C14 1.371 (5)
N1—C1 1.328 (4) C13—H13 0.9300
N1—C5 1.340 (4) C14—C15 1.373 (5)
N2—C6 1.302 (4) C14—H14 0.9300
N2—N3 1.382 (3) C15—H15 0.9300
N3—C7 1.311 (4) C16—C17 1.382 (5)
N3—Cu1i 1.989 (3) C16—H16 0.9300
N4—C6 1.362 (4) C17—C18 1.352 (5)
N4—C7 1.365 (4) C17—H17 0.9300
N4—C10 1.438 (4) C18—C19 1.380 (5)
N5—C16 1.322 (4) C18—H18 0.9300
N5—C20 1.342 (4) C19—C20 1.371 (5)
N6—C21 1.309 (4) C19—H19 0.9300
N6—N7 1.371 (3) C20—C21 1.457 (5)
N7—C22 1.317 (4) C22—C23 1.480 (5)
N7—Cu2ii 1.977 (3) C23—C24 1.515 (5)
N8—C22 1.358 (4) C23—H23A 0.9700
N8—C21 1.364 (4) C23—H23B 0.9700
N8—C25 1.457 (4) C24—H24A 0.9600
C1—C2 1.374 (5) C24—H24B 0.9600
C1—H1 0.9300 C24—H24C 0.9600
C2—C3 1.366 (5) C25—C26 1.367 (4)
C2—H2 0.9300 C25—C30 1.373 (4)
C3—C4 1.382 (4) C26—C27 1.374 (5)
C3—H3 0.9300 C26—H26 0.9300
C4—C5 1.362 (5) C27—C28 1.379 (5)
C4—H4 0.9300 C27—H27 0.9300
C5—C6 1.471 (4) C28—C29 1.369 (5)
C7—C8 1.482 (4) C28—H28 0.9300
C8—C9 1.522 (5) C29—C30 1.375 (5)
C8—H8A 0.9700 C29—H29 0.9300
C8—H8B 0.9700 C30—H30 0.9300
N3i—Cu1—N1 172.45 (11) H9A—C9—H9B 109.5
N3i—Cu1—N2 95.70 (10) C8—C9—H9C 109.5
N1—Cu1—N2 77.15 (11) H9A—C9—H9C 109.5
N3i—Cu1—Cl2 91.19 (9) H9B—C9—H9C 109.5
N1—Cu1—Cl2 89.93 (9) C15—C10—C11 121.0 (4)
N2—Cu1—Cl2 116.78 (8) C15—C10—N4 119.9 (3)
N3i—Cu1—Cl1 92.67 (8) C11—C10—N4 118.9 (3)
N1—Cu1—Cl1 92.30 (8) C12—C11—C10 118.6 (4)
N2—Cu1—Cl1 112.17 (8) C12—C11—H11 120.7
Cl2—Cu1—Cl1 130.20 (4) C10—C11—H11 120.7
N7ii—Cu2—N5 173.36 (11) C13—C12—C11 121.2 (4)
N7ii—Cu2—N6 96.47 (10) C13—C12—H12 119.4
N5—Cu2—N6 77.15 (11) C11—C12—H12 119.4
N7ii—Cu2—Cl4 90.06 (9) C12—C13—C14 119.7 (4)
N5—Cu2—Cl4 90.60 (9) C12—C13—H13 120.2
N6—Cu2—Cl4 111.51 (8) C14—C13—H13 120.2
N7ii—Cu2—Cl3 91.26 (8) C13—C14—C15 120.1 (4)
N5—Cu2—Cl3 92.95 (8) C13—C14—H14 119.9
N6—Cu2—Cl3 113.03 (8) C15—C14—H14 119.9
Cl4—Cu2—Cl3 134.97 (4) C10—C15—C14 119.3 (4)
C1—N1—C5 117.9 (3) C10—C15—H15 120.3
C1—N1—Cu1 122.4 (3) C14—C15—H15 120.3
C5—N1—Cu1 119.3 (2) N5—C16—C17 122.5 (4)
C6—N2—N3 106.7 (3) N5—C16—H16 118.8
C6—N2—Cu1 111.1 (2) C17—C16—H16 118.8
N3—N2—Cu1 141.9 (2) C18—C17—C16 119.0 (4)
C7—N3—N2 108.3 (3) C18—C17—H17 120.5
C7—N3—Cu1i 129.5 (2) C16—C17—H17 120.5
N2—N3—Cu1i 122.2 (2) C17—C18—C19 119.2 (4)
C6—N4—C7 105.2 (3) C17—C18—H18 120.4
C6—N4—C10 130.0 (3) C19—C18—H18 120.4
C7—N4—C10 124.5 (3) C20—C19—C18 118.8 (4)
C16—N5—C20 118.4 (3) C20—C19—H19 120.6
C16—N5—Cu2 122.0 (3) C18—C19—H19 120.6
C20—N5—Cu2 119.4 (2) N5—C20—C19 122.0 (3)
C21—N6—N7 107.3 (3) N5—C20—C21 112.5 (3)
C21—N6—Cu2 111.1 (2) C19—C20—C21 125.4 (3)
N7—N6—Cu2 141.4 (2) N6—C21—N8 109.6 (3)
C22—N7—N6 108.4 (3) N6—C21—C20 119.5 (3)
C22—N7—Cu2ii 129.7 (3) N8—C21—C20 130.9 (3)
N6—N7—Cu2ii 122.0 (2) N7—C22—N8 108.7 (3)
C22—N8—C21 106.1 (3) N7—C22—C23 125.6 (3)
C22—N8—C25 124.3 (3) N8—C22—C23 125.7 (3)
C21—N8—C25 129.6 (3) C22—C23—C24 114.7 (3)
N1—C1—C2 123.0 (4) C22—C23—H23A 108.6
N1—C1—H1 118.5 C24—C23—H23A 108.6
C2—C1—H1 118.5 C22—C23—H23B 108.6
C3—C2—C1 118.6 (4) C24—C23—H23B 108.6
C3—C2—H2 120.7 H23A—C23—H23B 107.6
C1—C2—H2 120.7 C23—C24—H24A 109.5
C2—C3—C4 119.0 (4) C23—C24—H24B 109.5
C2—C3—H3 120.5 H24A—C24—H24B 109.5
C4—C3—H3 120.5 C23—C24—H24C 109.5
C5—C4—C3 118.9 (4) H24A—C24—H24C 109.5
C5—C4—H4 120.5 H24B—C24—H24C 109.5
C3—C4—H4 120.5 C26—C25—C30 122.4 (4)
N1—C5—C4 122.5 (3) C26—C25—N8 119.8 (3)
N1—C5—C6 111.9 (3) C30—C25—N8 117.8 (3)
C4—C5—C6 125.5 (3) C25—C26—C27 118.3 (4)
N2—C6—N4 110.7 (3) C25—C26—H26 120.9
N2—C6—C5 119.8 (3) C27—C26—H26 120.9
N4—C6—C5 129.3 (4) C26—C27—C28 120.2 (4)
N3—C7—N4 109.1 (3) C26—C27—H27 119.9
N3—C7—C8 126.4 (4) C28—C27—H27 119.9
N4—C7—C8 124.4 (3) C29—C28—C27 120.6 (4)
C7—C8—C9 115.4 (3) C29—C28—H28 119.7
C7—C8—H8A 108.4 C27—C28—H28 119.7
C9—C8—H8A 108.4 C28—C29—C30 119.8 (4)
C7—C8—H8B 108.4 C28—C29—H29 120.1
C9—C8—H8B 108.4 C30—C29—H29 120.1
H8A—C8—H8B 107.5 C25—C30—C29 118.8 (4)
C8—C9—H9A 109.5 C25—C30—H30 120.6
C8—C9—H9B 109.5 C29—C30—H30 120.6

Symmetry codes: (i) −x+1, −y+2, −z; (ii) −x, −y+1, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C4—H4···Cl2iii 0.93 2.78 3.445 (4) 129
C15—H15···Cl3iv 0.93 2.78 3.579 (4) 145
C16—H16···Cl1v 0.93 2.76 3.518 (4) 139
C19—H19···Cl4vi 0.93 2.69 3.365 (4) 130

Symmetry codes: (iii) −x+2, −y+2, −z; (iv) −x+1, −y+2, −z+1; (v) x, y, z+1; (vi) −x+1, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV2472).

References

  1. Bruker (2000). SMART, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Chen, Z. L., Li, X. L. & Liang, F. P. (2008). J. Solid State Chem.181, 2078–2086.
  3. Kahn, O. & Martinez, C. J. (1998). Science, 279, 44–48.
  4. Klingele, M. H., Boyd, P. D. W., Moubaraki, B., Murray, K. S. & Brooker, S. (2005). Eur. J. Inorg. Chem. pp. 910–918.
  5. Matouzenko, G. S., Bousseksou, A., Borshch, S. A., Perrin, M., Zein, S., Salmon, L., Molnar, G. & Lecocq, S. (2004). Inorg. Chem.43, 227–236. [DOI] [PubMed]
  6. Matsukizono, H., Kuroiwa, K. & Kimizuka, N. (2008). Chem. Lett.37, 446–447. [DOI] [PubMed]
  7. Moliner, N., Gaspar, A. B., Munoz, M. C., Niel, V., Cano, J. & Real, J. A. (2001). Inorg. Chem.40, 3986–3991. [DOI] [PubMed]
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S160053680804035X/cv2472sup1.cif

e-65-00m22-sup1.cif (23.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S160053680804035X/cv2472Isup2.hkl

e-65-00m22-Isup2.hkl (279.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES