Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Dec 10;65(Pt 1):m28. doi: 10.1107/S160053680804083X

Bis[3,5-difluoro-2-(2-pyrid­yl)phen­yl](picolinato)iridium(III)

Mao-Liang Xu a, Guang-Bo Che b,*, Xiu-Ying Li b, Qi Xiao a
PMCID: PMC2967875  PMID: 21581501

Abstract

The Ir centre in the title complex, [Ir(C11H6F2N)2(C6H4NO2)], is six-coordinated in a slightly distorted octa­hedral IrC2N3O fashion.

Related literature

For background to organic light-emitting diodes (OLEDs), see: Cai et al. (2008); Chen et al. (2007); Park et al. (2006). For the synthesis, see: Lamansky et al. (2001);graphic file with name e-65-00m28-scheme1.jpg

Experimental

Crystal data

  • [Ir(C11H6F2N)2(C6H4NO2)]

  • M r = 694.64

  • Orthorhombic, Inline graphic

  • a = 16.469 (3) Å

  • b = 14.677 (3) Å

  • c = 19.612 (4) Å

  • V = 4740.3 (16) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 5.70 mm−1

  • T = 292 (2) K

  • 0.30 × 0.26 × 0.22 mm

Data collection

  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995) T min = 0.203, T max = 0.284

  • 43036 measured reflections

  • 5410 independent reflections

  • 4239 reflections with I > 2σ(I)

  • R int = 0.047

Refinement

  • R[F 2 > 2σ(F 2)] = 0.034

  • wR(F 2) = 0.066

  • S = 1.06

  • 5410 reflections

  • 343 parameters

  • H-atom parameters constrained

  • Δρmax = 2.31 e Å−3

  • Δρmin = −1.47 e Å−3

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO; data reduction: PROCESS-AUTO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S160053680804083X/bt2823sup1.cif

e-65-00m28-sup1.cif (20.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S160053680804083X/bt2823Isup2.hkl

e-65-00m28-Isup2.hkl (259.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected geometric parameters (Å, °).

C11—Ir 1.997 (5)
C22—Ir 1.993 (4)
N1—Ir 2.041 (4)
N2—Ir 2.045 (4)
N3—Ir 2.138 (4)
Ir—O1 2.152 (3)
C22—Ir—C11 88.95 (18)
C11—Ir—N1 81.53 (19)
N1—Ir—N2 175.14 (16)
N1—Ir—N3 93.78 (16)
C11—Ir—O1 95.02 (16)
N2—Ir—O1 93.88 (14)

Acknowledgments

The authors thank the Key Programs Foundation for Science and Technology Development of Shanxi Province and the Foundation of Jilin Normal University.

supplementary crystallographic information

Comment

In recent decades, the long-lived excited-state and highly efficient solid-state emissions of d6 and d8 metal complexes have made them of interest as potential components in organic light-emitting diodes (OLEDs) (Chen et al., 2007). Particularly, phosphorescent materials like Ir3+ complexes can significantly improve electroluminescent performance because both singlet and triplet excitons can be harvested for light emission, and usually are used as very promising phosphor dyes in OLEDs (Park et al., 2006). Recently, blue organic phosphor such as F2Irpic (F = 4,6-difluorophenylpyridinato-N,C-2' and pic = picolinate) (I) as a successful cyclometalated Ir3+ complex which has been typically doped into host matrices such as tetra-aryl silanes and short conjugation length carbazole derivatives in OLEDs, showing a good quantum efficiency (Cai et al., 2008). In this contribution, we synthesized and investigated crystal structure of F2Irpic.

As shown in Fig. 1, each Ir3+ cation is in a distorted octahedral coordination geometry, consisting of two chelating cyclometalated F ligands with cis-C—C and trans-N—N dispositions and one pic ligand. The Ir—O distance being 2.152 Å and Ir—C and Ir—N lengths are in the range of 1.993–1.997 Å and 2.041–2.138 Å, respectively.

Experimental

The title complex was obtained in two steps using a standard method (Lamansky et al., 2001) (71% yield based on Ir).

Refinement

All H atoms on C atoms were positioned geometrically (C—H = 0.93 Å) and refined as riding, with Uiso(H)= 1.2Ueq(C).

Figures

Fig. 1.

Fig. 1.

View of the title compound. Displacement ellipsoids are drawn at the 30% probability level (H atoms have been omitted).

Fig. 2.

Fig. 2.

Partial packing diagram of the title compound.

Crystal data

[Ir(C11H6F2N)2(C6H4NO2)] F(000) = 2672
Mr = 694.64 Dx = 1.947 Mg m3
Orthorhombic, Pbca Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2ab Cell parameters from 2859 reflections
a = 16.469 (3) Å θ = 3.0–27.5°
b = 14.677 (3) Å µ = 5.70 mm1
c = 19.612 (4) Å T = 292 K
V = 4740.3 (16) Å3 Block, yellow
Z = 8 0.30 × 0.26 × 0.22 mm

Data collection

Rigaku R-AXIS RAPID diffractometer 5410 independent reflections
Radiation source: fine-focus sealed tube 4239 reflections with I > 2σ(I)
graphite Rint = 0.047
Detector resolution: 10.0 pixels mm-1 θmax = 27.5°, θmin = 3.0°
ω scan h = −20→21
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) k = −19→19
Tmin = 0.203, Tmax = 0.284 l = −25→25
43036 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.066 H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.014P)2 + 17.09P] where P = (Fo2 + 2Fc2)/3
5410 reflections (Δ/σ)max = 0.002
343 parameters Δρmax = 2.31 e Å3
0 restraints Δρmin = −1.47 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.6207 (4) 0.1101 (4) 0.6853 (3) 0.0499 (13)
H1 0.5661 0.1221 0.6775 0.060*
C2 0.6411 (4) 0.0328 (4) 0.7211 (3) 0.0669 (17)
H2 0.6013 −0.0075 0.7359 0.080*
C3 0.7215 (5) 0.0169 (4) 0.7343 (3) 0.0707 (19)
H3 0.7368 −0.0343 0.7591 0.085*
C4 0.7802 (4) 0.0765 (4) 0.7107 (3) 0.0622 (16)
H4 0.8348 0.0660 0.7200 0.075*
C5 0.7565 (3) 0.1537 (4) 0.6724 (2) 0.0480 (13)
C6 0.8089 (3) 0.2221 (4) 0.6425 (3) 0.0473 (13)
C7 0.8932 (4) 0.2253 (5) 0.6464 (3) 0.0657 (18)
C8 0.9387 (3) 0.2931 (5) 0.6192 (3) 0.0658 (18)
H8 0.9949 0.2938 0.6241 0.079*
C9 0.8993 (4) 0.3605 (5) 0.5842 (3) 0.071 (2)
C10 0.8160 (3) 0.3619 (4) 0.5770 (3) 0.0542 (15)
H10 0.7911 0.4092 0.5534 0.065*
C11 0.7702 (3) 0.2939 (3) 0.6046 (2) 0.0419 (11)
C12 0.6176 (3) 0.4753 (4) 0.5608 (3) 0.0509 (13)
H12 0.6167 0.4868 0.6074 0.061*
C13 0.6061 (4) 0.5465 (4) 0.5168 (3) 0.0661 (17)
H13 0.5978 0.6053 0.5330 0.079*
C14 0.6071 (4) 0.5284 (4) 0.4480 (3) 0.0688 (18)
H14 0.5994 0.5755 0.4169 0.083*
C15 0.6194 (4) 0.4416 (4) 0.4248 (3) 0.0558 (15)
H15 0.6196 0.4297 0.3782 0.067*
C16 0.6316 (3) 0.3711 (3) 0.4712 (2) 0.0385 (11)
C17 0.6479 (3) 0.2753 (3) 0.4558 (2) 0.0383 (10)
C18 0.6517 (3) 0.2361 (4) 0.3914 (3) 0.0472 (12)
C19 0.6645 (3) 0.1461 (4) 0.3795 (3) 0.0518 (14)
H19 0.6669 0.1222 0.3356 0.062*
C20 0.6738 (3) 0.0926 (4) 0.4362 (3) 0.0541 (14)
C21 0.6723 (3) 0.1253 (4) 0.5017 (3) 0.0515 (14)
H21 0.6804 0.0859 0.5382 0.062*
C22 0.6587 (3) 0.2175 (3) 0.5135 (2) 0.0357 (9)
C23 0.4938 (3) 0.3110 (3) 0.6744 (2) 0.0386 (11)
C24 0.4141 (3) 0.3031 (4) 0.6958 (3) 0.0525 (14)
H24 0.3964 0.3333 0.7348 0.063*
C25 0.3613 (4) 0.2499 (4) 0.6585 (3) 0.0628 (17)
H25 0.3079 0.2422 0.6728 0.075*
C26 0.3882 (4) 0.2091 (5) 0.6007 (4) 0.0697 (18)
H26 0.3528 0.1744 0.5744 0.084*
C27 0.4686 (3) 0.2192 (4) 0.5809 (3) 0.0556 (14)
H27 0.4864 0.1913 0.5410 0.067*
C28 0.5564 (3) 0.3678 (3) 0.7132 (2) 0.0430 (12)
N1 0.6763 (3) 0.1695 (3) 0.6610 (2) 0.0417 (10)
N2 0.6303 (2) 0.3893 (3) 0.53947 (19) 0.0365 (9)
N3 0.5214 (2) 0.2683 (3) 0.6182 (2) 0.0391 (9)
F1 0.9340 (2) 0.1567 (3) 0.6813 (2) 0.0938 (13)
F2 0.9423 (2) 0.4287 (3) 0.5565 (2) 0.1009 (15)
F3 0.6422 (2) 0.2901 (3) 0.33525 (15) 0.0727 (10)
F4 0.6870 (3) 0.0019 (2) 0.4263 (2) 0.0847 (12)
Ir 0.649485 (11) 0.281026 (12) 0.603051 (9) 0.03453 (6)
O1 0.6297 (2) 0.3595 (2) 0.69428 (16) 0.0409 (8)
O2 0.5319 (2) 0.4165 (3) 0.7596 (2) 0.0652 (11)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.059 (3) 0.041 (3) 0.050 (3) −0.002 (2) 0.001 (3) 0.007 (3)
C2 0.091 (5) 0.046 (3) 0.064 (4) 0.003 (3) 0.003 (4) 0.016 (3)
C3 0.094 (5) 0.056 (4) 0.061 (4) 0.026 (4) −0.010 (4) 0.010 (3)
C4 0.067 (4) 0.060 (4) 0.059 (4) 0.021 (3) −0.011 (3) 0.004 (3)
C5 0.056 (3) 0.051 (3) 0.036 (3) 0.011 (3) −0.005 (2) −0.012 (2)
C6 0.033 (2) 0.060 (3) 0.049 (3) 0.008 (2) −0.003 (2) −0.024 (3)
C7 0.050 (3) 0.089 (5) 0.057 (4) 0.010 (4) −0.004 (3) −0.019 (4)
C8 0.032 (3) 0.098 (5) 0.068 (4) −0.003 (3) 0.000 (3) −0.023 (4)
C9 0.050 (4) 0.093 (5) 0.070 (4) −0.031 (4) 0.022 (3) −0.023 (4)
C10 0.042 (3) 0.069 (4) 0.052 (3) −0.005 (3) 0.002 (3) −0.017 (3)
C11 0.044 (3) 0.045 (3) 0.037 (2) −0.001 (2) 0.001 (2) −0.012 (2)
C12 0.067 (4) 0.034 (3) 0.052 (3) 0.001 (3) −0.009 (3) 0.003 (2)
C13 0.090 (5) 0.038 (3) 0.070 (4) 0.001 (3) −0.009 (4) 0.001 (3)
C14 0.091 (5) 0.047 (4) 0.068 (4) 0.004 (3) −0.011 (4) 0.017 (3)
C15 0.070 (4) 0.055 (4) 0.043 (3) 0.002 (3) 0.001 (3) 0.012 (3)
C16 0.035 (3) 0.043 (3) 0.038 (2) −0.001 (2) 0.000 (2) 0.004 (2)
C17 0.032 (2) 0.045 (3) 0.038 (2) −0.001 (2) 0.001 (2) −0.003 (2)
C18 0.037 (2) 0.064 (4) 0.040 (3) 0.001 (3) 0.003 (2) 0.001 (3)
C19 0.042 (3) 0.073 (4) 0.041 (3) 0.007 (3) −0.003 (2) −0.024 (3)
C20 0.057 (3) 0.047 (3) 0.058 (4) 0.009 (3) −0.006 (3) −0.019 (3)
C21 0.063 (4) 0.038 (3) 0.054 (3) 0.009 (2) −0.004 (3) −0.003 (2)
C22 0.035 (2) 0.036 (2) 0.036 (2) −0.001 (2) −0.001 (2) −0.005 (2)
C23 0.045 (3) 0.035 (3) 0.036 (3) 0.002 (2) −0.001 (2) 0.010 (2)
C24 0.046 (3) 0.062 (4) 0.050 (3) 0.005 (3) −0.003 (3) 0.011 (3)
C25 0.047 (3) 0.074 (4) 0.068 (4) −0.011 (3) −0.001 (3) 0.018 (3)
C26 0.053 (3) 0.077 (5) 0.079 (5) −0.021 (3) −0.012 (3) −0.002 (4)
C27 0.060 (3) 0.054 (3) 0.052 (3) −0.008 (3) −0.010 (3) −0.005 (3)
C28 0.054 (3) 0.038 (3) 0.037 (3) 0.002 (2) −0.007 (2) 0.003 (2)
N1 0.046 (2) 0.040 (2) 0.039 (2) 0.0068 (19) −0.0049 (19) −0.0004 (19)
N2 0.040 (2) 0.032 (2) 0.038 (2) −0.0019 (16) −0.0039 (17) 0.0008 (17)
N3 0.038 (2) 0.039 (2) 0.040 (2) −0.0031 (17) −0.0062 (17) 0.0059 (18)
F1 0.054 (2) 0.119 (4) 0.108 (3) 0.028 (2) −0.021 (2) −0.010 (3)
F2 0.072 (3) 0.116 (4) 0.116 (3) −0.041 (3) 0.026 (3) −0.009 (3)
F3 0.094 (3) 0.089 (3) 0.0345 (16) 0.010 (2) −0.0010 (17) 0.0034 (17)
F4 0.118 (3) 0.051 (2) 0.086 (3) 0.023 (2) −0.012 (2) −0.028 (2)
Ir 0.04007 (10) 0.03117 (9) 0.03235 (9) 0.00048 (8) −0.00413 (8) −0.00017 (8)
O1 0.044 (2) 0.0416 (19) 0.0376 (17) −0.0021 (15) −0.0060 (15) −0.0040 (15)
O2 0.061 (3) 0.078 (3) 0.057 (2) 0.009 (2) 0.002 (2) −0.023 (2)

Geometric parameters (Å, °)

C1—N1 1.351 (6) C16—N2 1.366 (6)
C1—C2 1.375 (7) C16—C17 1.463 (7)
C1—H1 0.9300 C17—C18 1.388 (7)
C2—C3 1.370 (9) C17—C22 1.426 (7)
C2—H2 0.9300 C18—C19 1.359 (8)
C3—C4 1.383 (9) C18—F3 1.366 (6)
C3—H3 0.9300 C19—C20 1.370 (8)
C4—C5 1.415 (8) C19—H19 0.9300
C4—H4 0.9300 C20—F4 1.363 (6)
C5—N1 1.359 (7) C20—C21 1.371 (7)
C5—C6 1.448 (8) C21—C22 1.391 (7)
C6—C7 1.391 (7) C21—H21 0.9300
C6—C11 1.439 (7) C22—Ir 1.993 (4)
C7—C8 1.355 (9) C23—N3 1.346 (6)
C7—F1 1.391 (8) C23—C24 1.383 (7)
C8—C9 1.368 (10) C23—C28 1.528 (7)
C8—H8 0.9300 C24—C25 1.379 (8)
C9—F2 1.341 (7) C24—H24 0.9300
C9—C10 1.380 (8) C25—C26 1.356 (9)
C10—C11 1.362 (7) C25—H25 0.9300
C10—H10 0.9300 C26—C27 1.388 (8)
C11—Ir 1.997 (5) C26—H26 0.9300
C12—N2 1.345 (6) C27—N3 1.347 (6)
C12—C13 1.368 (8) C27—H27 0.9300
C12—H12 0.9300 C28—O2 1.226 (6)
C13—C14 1.377 (9) C28—O1 1.269 (6)
C13—H13 0.9300 N1—Ir 2.041 (4)
C14—C15 1.367 (8) N2—Ir 2.045 (4)
C14—H14 0.9300 N3—Ir 2.138 (4)
C15—C16 1.392 (7) Ir—O1 2.152 (3)
C15—H15 0.9300
N1—C1—C2 123.2 (6) C18—C19—H19 122.1
N1—C1—H1 118.4 C20—C19—H19 122.1
C2—C1—H1 118.4 F4—C20—C19 117.5 (5)
C3—C2—C1 118.2 (6) F4—C20—C21 118.6 (5)
C3—C2—H2 120.9 C19—C20—C21 123.9 (5)
C1—C2—H2 120.9 C20—C21—C22 120.0 (5)
C2—C3—C4 120.3 (6) C20—C21—H21 120.0
C2—C3—H3 119.9 C22—C21—H21 120.0
C4—C3—H3 119.9 C21—C22—C17 117.8 (4)
C3—C4—C5 119.4 (6) C21—C22—Ir 127.9 (4)
C3—C4—H4 120.3 C17—C22—Ir 114.3 (3)
C5—C4—H4 120.3 N3—C23—C24 122.0 (5)
N1—C5—C4 119.5 (6) N3—C23—C28 115.7 (4)
N1—C5—C6 113.3 (5) C24—C23—C28 122.3 (5)
C4—C5—C6 127.3 (5) C25—C24—C23 119.0 (6)
C7—C6—C11 116.5 (6) C25—C24—H24 120.5
C7—C6—C5 126.6 (6) C23—C24—H24 120.5
C11—C6—C5 116.9 (4) C26—C25—C24 119.2 (6)
C8—C7—F1 117.3 (6) C26—C25—H25 120.4
C8—C7—C6 123.7 (7) C24—C25—H25 120.4
F1—C7—C6 119.0 (7) C25—C26—C27 119.9 (6)
C7—C8—C9 117.8 (6) C25—C26—H26 120.1
C7—C8—H8 121.1 C27—C26—H26 120.1
C9—C8—H8 121.1 N3—C27—C26 121.4 (6)
F2—C9—C8 119.5 (6) N3—C27—H27 119.3
F2—C9—C10 118.2 (7) C26—C27—H27 119.3
C8—C9—C10 122.3 (6) O2—C28—O1 125.8 (5)
C11—C10—C9 120.0 (6) O2—C28—C23 117.8 (5)
C11—C10—H10 120.0 O1—C28—C23 116.4 (4)
C9—C10—H10 120.0 C1—N1—C5 119.3 (5)
C10—C11—C6 119.7 (5) C1—N1—Ir 124.6 (4)
C10—C11—Ir 127.9 (4) C5—N1—Ir 116.0 (4)
C6—C11—Ir 112.3 (4) C12—N2—C16 119.4 (4)
N2—C12—C13 122.9 (5) C12—N2—Ir 124.3 (3)
N2—C12—H12 118.6 C16—N2—Ir 116.3 (3)
C13—C12—H12 118.6 C23—N3—C27 118.5 (4)
C12—C13—C14 118.0 (6) C23—N3—Ir 114.0 (3)
C12—C13—H13 121.0 C27—N3—Ir 127.4 (4)
C14—C13—H13 121.0 C22—Ir—C11 88.95 (18)
C15—C14—C13 120.5 (6) C22—Ir—N1 95.68 (18)
C15—C14—H14 119.8 C11—Ir—N1 81.53 (19)
C13—C14—H14 119.8 C22—Ir—N2 80.69 (18)
C14—C15—C16 119.8 (6) C11—Ir—N2 95.13 (18)
C14—C15—H15 120.1 N1—Ir—N2 175.14 (16)
C16—C15—H15 120.1 C22—Ir—N3 99.04 (17)
N2—C16—C15 119.5 (5) C11—Ir—N3 171.13 (17)
N2—C16—C17 113.1 (4) N1—Ir—N3 93.78 (16)
C15—C16—C17 127.3 (5) N2—Ir—N3 89.99 (15)
C18—C17—C22 118.1 (4) C22—Ir—O1 173.55 (16)
C18—C17—C16 126.4 (5) C11—Ir—O1 95.02 (16)
C22—C17—C16 115.5 (4) N1—Ir—O1 89.94 (14)
C19—C18—F3 116.3 (5) N2—Ir—O1 93.88 (14)
C19—C18—C17 124.5 (5) N3—Ir—O1 77.38 (14)
F3—C18—C17 119.2 (5) C28—O1—Ir 116.0 (3)
C18—C19—C20 115.8 (5)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT2823).

References

  1. Cai, X. Y., Padmaperuma, A. B., Sapochak, L. S., Vecchi, P. A. & Burrows, P. E. (2008). Appl. Phys. Lett.92, 083308–3.
  2. Chen, L. Q., Yang, C. L., Li, M., Qin, J. G., Gao, J., You, H. & Ma, D. G. (2007). Cryst. Growth Des.7, 39–46.
  3. Higashi, T. (1995). ABSCOR Rigaku Corporation, Tokyo, Japan.
  4. Lamansky, S., Djurovich, P., Murphy, D., Abdel-Razzaq, F., Lee, H., Adachi, C., Burrows, P. E., Forrest, S. R. & Thompson, M. E. (2001). J. Am. Chem. Soc.123, 4304–4312. [DOI] [PubMed]
  5. Park, N. G., Choi, G. C., Lee, Y. H. & Kim, Y. S. (2006). Curr. Appl. Phys.6, 620–626.
  6. Rigaku (1998). PROCESS-AUTO Rigaku Corporation, Tokyo, Japan.
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S160053680804083X/bt2823sup1.cif

e-65-00m28-sup1.cif (20.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S160053680804083X/bt2823Isup2.hkl

e-65-00m28-Isup2.hkl (259.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES