Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Dec 10;65(Pt 1):m44. doi: 10.1107/S1600536808041354

Chlorido{N,N′-o-phenyl­ene-[6,6′-ethyl­enebis(pyridine-2-carboxamide)]}iron(III)

Li Yang a,*, Bin Tang b
PMCID: PMC2967889  PMID: 21581516

Abstract

In the title compound, [Fe(C20H14N4O2)Cl], the FeIII ion is in a distorted square-pyramidal environment, with two pyridine and two deprotonated amide N atoms in the basal plane and the Cl ion in the apical position. The FeIII ion is displaced from the basal plane of the square- pyramid towards the apical Cl atom by 0.2942 (4) Å. The mol­ecules are linked into a three-dimensional network by C—H⋯Cl and C—H⋯O hydrogen bonds.

Related literature

For general background, see: Liu et al. (2006); Yang et al. (2007); Momenteau & Reed (1994). For related structures, see: Rath et al. (2004); Xu et al. (2007).graphic file with name e-65-00m44-scheme1.jpg

Experimental

Crystal data

  • [Fe(C20H14N4O2)Cl]

  • M r = 433.65

  • Monoclinic, Inline graphic

  • a = 11.8532 (2) Å

  • b = 8.2028 (1) Å

  • c = 19.3507 (3) Å

  • β = 106.889 (1)°

  • V = 1800.31 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.01 mm−1

  • T = 296 (2) K

  • 0.44 × 0.16 × 0.10 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS, Sheldrick, 1996) T min = 0.778, T max = 1.000 (expected range = 0.703–0.904)

  • 24687 measured reflections

  • 4142 independent reflections

  • 3415 reflections with I > 2σ(I)

  • R int = 0.041

Refinement

  • R[F 2 > 2σ(F 2)] = 0.040

  • wR(F 2) = 0.126

  • S = 1.01

  • 4142 reflections

  • 253 parameters

  • H-atom parameters constrained

  • Δρmax = 0.62 e Å−3

  • Δρmin = −0.43 e Å−3

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808041354/ci2736sup1.cif

e-65-00m44-sup1.cif (22.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808041354/ci2736Isup2.hkl

e-65-00m44-Isup2.hkl (203KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected bond lengths (Å).

Fe1—N1 1.871 (2)
Fe1—N4 1.889 (2)
Fe1—N3 2.016 (2)
Fe1—N2 2.032 (2)
Fe1—Cl1 2.3080 (8)

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3A⋯Cl1i 0.93 2.80 3.595 (4) 144
C10—H10A⋯Cl1ii 0.93 2.71 3.617 (3) 165
C11—H11A⋯O1iii 0.93 2.46 3.290 (5) 149

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

The project was sponsored by the Foundation of Yibin University.

supplementary crystallographic information

Comment

The chemistry of macrocyclic complexes has attracted the interest of both inorganic and bioinorganic chemists in recent years. Iron(III) complexes are involved in numerous biological redox reactions performed by metalloenzymes (Momenteau et al., 1994). As part of our studies on catalysis by N4 non-porphyrin complexes (Liu et al., 2006; Yang et al., 2007), we report here the crystal structure of a iron(III) complex with 1,2-[bis(6'-pyridine-2'-carboxamido)-ethane]benzene.

As shown in Fig.1, the complex has a five-coordinate structure with two pyridine and two deprotonated amide N atoms in the basal plane while the Cl ion is bonded to the FeIII center in the apical position. The geometry around the FeIII ion is approximately square-pyramidal. The Fe—N(amide) distances are shorter than the Fe—N(pyridine) distances (Table 1), both of which are shorter than the Fe—N distances found in the non-ring related Fe—N4 complexes such as [NEt4][Fe(bbpc)Cl2][H2bbpc is N,N'-(4,5-dichloro-o-phenylene)bis(4-tertbutylpyridine-2-carboxamide)] (Xu et al., 2007). The Fe—Cl distance of 2.3080 (8) Å is slightly shorter than that observed in [Fe(bbpc)Cl2](Et4N) (2.3299 (9) Å and 2.3880 (9) Å), while it is longer than that in [FeCl(meso-NH2-octaethylporphyrin)] (2.2596 (8) Å, Sankar et al., 2004).

In the crystalline state, the molecules are linked into a three-dimensional network by C—H···Cl and C—H···O hydrogen bonds (Table 2).

Experimental

1,2-[Bis(6'-pyridine-2'carboxamido)-ethane]benzene (132 mg, 0.38 mmol) and sodium acetate (80 mg, 0.76 mmol) were added to a stirred solution of FeCl3.6H2O (244 mg, 0.9 mmol) in CH3OH (20 ml). The colour of the mixture turned green almost immediately. The mixture was refluxed for 3 h and dark green microcrystals appeared. They were collected by filtration, washed with methanol, and air-dried. (123 mg, yield 75%). Single crystals suitable for X-ray diffraction were grown via diffusion of Et2O into a DMF solution of the complex. Selected IR data (KBr, cm-1):ν=1629 (C=O), 1602 (C—N), 1572, 1346, 1287, 1142, 1083, 1081, 762. MS (FAB): 398.3([Fe(bpeb)]+).

Refinement

All H atoms were positioned geometrically and refined as riding, with C-H = 0.93 Å (aromatic) or 0.97 Å (methylene) and Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level.

Crystal data

[Fe(C20H14N4O2)Cl] F(000) = 884
Mr = 433.65 Dx = 1.600 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 9989 reflections
a = 11.8532 (2) Å θ = 2.2–27.4°
b = 8.2028 (1) Å µ = 1.01 mm1
c = 19.3507 (3) Å T = 296 K
β = 106.889 (1)° Plate, black
V = 1800.31 (5) Å3 0.44 × 0.16 × 0.10 mm
Z = 4

Data collection

Bruker SMART CCD area-detector diffractometer 4142 independent reflections
Radiation source: fine-focus sealed tube 3415 reflections with I > 2σ(I)
graphite Rint = 0.041
φ and ω scans θmax = 27.5°, θmin = 2.2°
Absorption correction: multi-scan (SADABS, Sheldrick, 1996) h = −15→15
Tmin = 0.778, Tmax = 1.000 k = −10→10
24687 measured reflections l = −25→25

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.126 H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0642P)2 + 2.4383P] where P = (Fo2 + 2Fc2)/3
4142 reflections (Δ/σ)max = 0.001
253 parameters Δρmax = 0.62 e Å3
0 restraints Δρmin = −0.43 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F^2^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The threshold expression of F^2^ > σ(F^2^) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Fe1 0.45008 (3) 0.56516 (5) 0.62759 (2) 0.02844 (13)
Cl1 0.49959 (7) 0.48979 (10) 0.74759 (4) 0.0423 (2)
O1 0.1136 (2) 0.6292 (4) 0.61432 (18) 0.0676 (8)
O2 0.5587 (2) 0.2335 (3) 0.51016 (14) 0.0529 (6)
N1 0.2870 (2) 0.5301 (3) 0.59827 (14) 0.0352 (5)
N2 0.4003 (2) 0.7937 (3) 0.64688 (12) 0.0321 (5)
N3 0.6194 (2) 0.5763 (3) 0.62630 (12) 0.0298 (5)
N4 0.44925 (19) 0.3762 (3) 0.57162 (12) 0.0305 (5)
C1 0.2181 (3) 0.6411 (4) 0.61888 (17) 0.0399 (7)
C2 0.2867 (3) 0.7921 (4) 0.64770 (16) 0.0373 (6)
C3 0.2337 (3) 0.9212 (4) 0.67153 (19) 0.0509 (9)
H3A 0.1555 0.9156 0.6719 0.061*
C4 0.3014 (4) 1.0606 (5) 0.6950 (2) 0.0564 (10)
H4A 0.2696 1.1495 0.7127 0.068*
C5 0.4145 (4) 1.0649 (4) 0.69173 (18) 0.0483 (8)
H5A 0.4594 1.1585 0.7062 0.058*
C6 0.4643 (3) 0.9306 (4) 0.66690 (16) 0.0377 (7)
C7 0.5853 (3) 0.9393 (4) 0.65875 (18) 0.0443 (7)
H7A 0.6159 1.0483 0.6716 0.053*
H7B 0.5800 0.9222 0.6083 0.053*
C8 0.6751 (3) 0.8146 (4) 0.70492 (17) 0.0418 (7)
H8A 0.7468 0.8722 0.7301 0.050*
H8B 0.6425 0.7683 0.7411 0.050*
C9 0.7061 (2) 0.6787 (4) 0.66208 (15) 0.0352 (6)
C10 0.8207 (3) 0.6559 (4) 0.65877 (18) 0.0453 (8)
H10A 0.8794 0.7287 0.6824 0.054*
C11 0.8485 (3) 0.5277 (5) 0.62112 (19) 0.0479 (8)
H11A 0.9255 0.5124 0.6195 0.057*
C12 0.7599 (3) 0.4217 (4) 0.58564 (17) 0.0413 (7)
H12A 0.7760 0.3331 0.5600 0.050*
C13 0.6471 (2) 0.4504 (3) 0.58911 (15) 0.0314 (6)
C14 0.5471 (2) 0.3397 (4) 0.55255 (15) 0.0333 (6)
C15 0.2484 (2) 0.3809 (4) 0.56301 (16) 0.0348 (6)
C16 0.1338 (3) 0.3196 (4) 0.5414 (2) 0.0499 (8)
H16A 0.0724 0.3773 0.5509 0.060*
C17 0.1128 (3) 0.1721 (5) 0.5056 (2) 0.0590 (10)
H17A 0.0364 0.1311 0.4905 0.071*
C18 0.2030 (3) 0.0846 (4) 0.4919 (2) 0.0547 (9)
H18A 0.1870 −0.0153 0.4683 0.066*
C19 0.3178 (3) 0.1438 (4) 0.51280 (16) 0.0414 (7)
H19A 0.3789 0.0840 0.5041 0.050*
C20 0.3393 (2) 0.2947 (3) 0.54712 (15) 0.0328 (6)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Fe1 0.0262 (2) 0.0225 (2) 0.0375 (2) −0.00026 (14) 0.01073 (15) −0.00375 (15)
Cl1 0.0483 (4) 0.0381 (4) 0.0427 (4) 0.0044 (3) 0.0169 (3) 0.0083 (3)
O1 0.0352 (13) 0.0650 (18) 0.109 (2) 0.0042 (12) 0.0307 (14) −0.0117 (17)
O2 0.0472 (13) 0.0475 (14) 0.0671 (15) 0.0005 (11) 0.0215 (11) −0.0268 (12)
N1 0.0278 (11) 0.0299 (13) 0.0484 (14) 0.0000 (9) 0.0119 (10) −0.0014 (10)
N2 0.0410 (13) 0.0221 (11) 0.0345 (12) 0.0034 (10) 0.0132 (10) −0.0013 (9)
N3 0.0287 (11) 0.0274 (12) 0.0334 (11) −0.0026 (9) 0.0091 (9) −0.0020 (9)
N4 0.0301 (11) 0.0237 (11) 0.0370 (12) −0.0025 (9) 0.0088 (9) −0.0049 (9)
C1 0.0337 (15) 0.0377 (17) 0.0515 (17) 0.0065 (12) 0.0175 (13) 0.0020 (14)
C2 0.0424 (16) 0.0333 (15) 0.0396 (15) 0.0099 (12) 0.0173 (12) 0.0021 (12)
C3 0.058 (2) 0.047 (2) 0.055 (2) 0.0213 (17) 0.0282 (17) 0.0042 (16)
C4 0.083 (3) 0.0406 (19) 0.0494 (19) 0.0225 (19) 0.0254 (18) −0.0016 (15)
C5 0.076 (2) 0.0272 (15) 0.0401 (16) 0.0053 (15) 0.0136 (16) −0.0027 (13)
C6 0.0547 (18) 0.0249 (14) 0.0325 (14) 0.0017 (13) 0.0108 (12) 0.0010 (11)
C7 0.0553 (19) 0.0264 (15) 0.0517 (18) −0.0103 (13) 0.0166 (15) −0.0024 (13)
C8 0.0421 (16) 0.0388 (17) 0.0411 (16) −0.0095 (13) 0.0069 (13) −0.0082 (13)
C9 0.0322 (14) 0.0346 (15) 0.0365 (14) −0.0063 (12) 0.0066 (11) −0.0002 (12)
C10 0.0314 (15) 0.051 (2) 0.0500 (18) −0.0110 (14) 0.0058 (13) 0.0020 (15)
C11 0.0270 (14) 0.063 (2) 0.0540 (19) 0.0007 (14) 0.0126 (13) 0.0059 (17)
C12 0.0330 (15) 0.0472 (19) 0.0462 (17) 0.0054 (13) 0.0154 (13) 0.0001 (14)
C13 0.0311 (13) 0.0311 (14) 0.0321 (13) 0.0019 (11) 0.0092 (10) 0.0020 (11)
C14 0.0339 (14) 0.0296 (14) 0.0360 (14) 0.0024 (11) 0.0094 (11) −0.0030 (11)
C15 0.0318 (14) 0.0287 (14) 0.0423 (15) −0.0045 (11) 0.0084 (11) 0.0036 (12)
C16 0.0325 (16) 0.0450 (19) 0.070 (2) −0.0058 (14) 0.0115 (15) 0.0041 (17)
C17 0.0431 (19) 0.047 (2) 0.079 (3) −0.0221 (16) 0.0051 (17) 0.0039 (19)
C18 0.063 (2) 0.0346 (18) 0.059 (2) −0.0211 (16) 0.0073 (17) −0.0051 (15)
C19 0.0493 (18) 0.0317 (16) 0.0420 (16) −0.0082 (13) 0.0114 (13) −0.0036 (13)
C20 0.0326 (14) 0.0281 (14) 0.0360 (14) −0.0047 (11) 0.0073 (11) 0.0012 (11)

Geometric parameters (Å, °)

Fe1—N1 1.871 (2) C7—C8 1.557 (5)
Fe1—N4 1.889 (2) C7—H7A 0.97
Fe1—N3 2.016 (2) C7—H7B 0.97
Fe1—N2 2.032 (2) C8—C9 1.497 (4)
Fe1—Cl1 2.3080 (8) C8—H8A 0.97
O1—C1 1.220 (4) C8—H8B 0.97
O2—C14 1.231 (3) C9—C10 1.392 (4)
N1—C1 1.358 (4) C10—C11 1.373 (5)
N1—C15 1.412 (4) C10—H10A 0.93
N2—C6 1.348 (4) C11—C12 1.383 (5)
N2—C2 1.350 (4) C11—H11A 0.93
N3—C9 1.352 (4) C12—C13 1.378 (4)
N3—C13 1.353 (4) C12—H12A 0.93
N4—C14 1.349 (4) C13—C14 1.498 (4)
N4—C20 1.418 (3) C15—C16 1.394 (4)
C1—C2 1.498 (5) C15—C20 1.396 (4)
C2—C3 1.378 (4) C16—C17 1.380 (5)
C3—C4 1.395 (6) C16—H16A 0.93
C3—H3A 0.93 C17—C18 1.376 (6)
C4—C5 1.361 (6) C17—H17A 0.93
C4—H4A 0.93 C18—C19 1.390 (5)
C5—C6 1.399 (4) C18—H18A 0.93
C5—H5A 0.93 C19—C20 1.392 (4)
C6—C7 1.490 (5) C19—H19A 0.93
N1—Fe1—N4 82.38 (10) C8—C7—H7B 108.5
N1—Fe1—N3 161.28 (10) H7A—C7—H7B 107.5
N4—Fe1—N3 82.51 (9) C9—C8—C7 114.1 (3)
N1—Fe1—N2 82.39 (10) C9—C8—H8A 108.7
N4—Fe1—N2 155.32 (10) C7—C8—H8A 108.7
N3—Fe1—N2 107.69 (10) C9—C8—H8B 108.7
N1—Fe1—Cl1 101.67 (8) C7—C8—H8B 108.7
N4—Fe1—Cl1 108.32 (8) H8A—C8—H8B 107.6
N3—Fe1—Cl1 93.53 (7) N3—C9—C10 120.1 (3)
N2—Fe1—Cl1 93.71 (7) N3—C9—C8 118.3 (3)
C1—N1—C15 125.8 (3) C10—C9—C8 121.7 (3)
C1—N1—Fe1 117.7 (2) C11—C10—C9 121.0 (3)
C15—N1—Fe1 116.19 (19) C11—C10—H10A 119.5
C6—N2—C2 119.0 (3) C9—C10—H10A 119.5
C6—N2—Fe1 130.7 (2) C10—C11—C12 118.7 (3)
C2—N2—Fe1 109.69 (19) C10—C11—H11A 120.6
C9—N3—C13 118.7 (2) C12—C11—H11A 120.6
C9—N3—Fe1 129.3 (2) C13—C12—C11 118.4 (3)
C13—N3—Fe1 111.65 (18) C13—C12—H12A 120.8
C14—N4—C20 125.7 (2) C11—C12—H12A 120.8
C14—N4—Fe1 118.49 (18) N3—C13—C12 123.1 (3)
C20—N4—Fe1 115.45 (18) N3—C13—C14 115.6 (2)
O1—C1—N1 127.6 (3) C12—C13—C14 121.3 (3)
O1—C1—C2 121.5 (3) O2—C14—N4 127.6 (3)
N1—C1—C2 110.8 (2) O2—C14—C13 121.2 (3)
N2—C2—C3 123.4 (3) N4—C14—C13 111.2 (2)
N2—C2—C1 116.0 (2) C16—C15—C20 119.9 (3)
C3—C2—C1 120.6 (3) C16—C15—N1 127.5 (3)
C2—C3—C4 117.6 (3) C20—C15—N1 112.5 (2)
C2—C3—H3A 121.2 C17—C16—C15 119.0 (3)
C4—C3—H3A 121.2 C17—C16—H16A 120.5
C5—C4—C3 119.1 (3) C15—C16—H16A 120.5
C5—C4—H4A 120.4 C18—C17—C16 121.1 (3)
C3—C4—H4A 120.4 C18—C17—H17A 119.4
C4—C5—C6 121.0 (3) C16—C17—H17A 119.4
C4—C5—H5A 119.5 C17—C18—C19 120.8 (3)
C6—C5—H5A 119.5 C17—C18—H18A 119.6
N2—C6—C5 119.8 (3) C19—C18—H18A 119.6
N2—C6—C7 119.2 (3) C18—C19—C20 118.5 (3)
C5—C6—C7 120.9 (3) C18—C19—H19A 120.7
C6—C7—C8 115.3 (3) C20—C19—H19A 120.7
C6—C7—H7A 108.5 C19—C20—C15 120.6 (3)
C8—C7—H7A 108.5 C19—C20—N4 127.0 (3)
C6—C7—H7B 108.5 C15—C20—N4 112.4 (2)
N4—Fe1—N1—C1 −176.9 (2) C2—N2—C6—C7 −173.6 (3)
N3—Fe1—N1—C1 −140.5 (3) Fe1—N2—C6—C7 16.6 (4)
N2—Fe1—N1—C1 −16.3 (2) C4—C5—C6—N2 −1.0 (5)
Cl1—Fe1—N1—C1 75.9 (2) C4—C5—C6—C7 175.9 (3)
N4—Fe1—N1—C15 9.6 (2) N2—C6—C7—C8 −63.1 (4)
N3—Fe1—N1—C15 46.0 (4) C5—C6—C7—C8 119.9 (3)
N2—Fe1—N1—C15 170.1 (2) C6—C7—C8—C9 107.4 (3)
Cl1—Fe1—N1—C15 −97.6 (2) C13—N3—C9—C10 1.6 (4)
N1—Fe1—N2—C6 −173.7 (3) Fe1—N3—C9—C10 174.0 (2)
N4—Fe1—N2—C6 −121.4 (3) C13—N3—C9—C8 −178.2 (3)
N3—Fe1—N2—C6 −9.9 (3) Fe1—N3—C9—C8 −5.7 (4)
Cl1—Fe1—N2—C6 85.0 (2) C7—C8—C9—N3 −62.5 (4)
N1—Fe1—N2—C2 15.76 (19) C7—C8—C9—C10 117.7 (3)
N4—Fe1—N2—C2 68.1 (3) N3—C9—C10—C11 −1.8 (5)
N3—Fe1—N2—C2 179.57 (18) C8—C9—C10—C11 177.9 (3)
Cl1—Fe1—N2—C2 −85.53 (19) C9—C10—C11—C12 0.7 (5)
N1—Fe1—N3—C9 150.2 (3) C10—C11—C12—C13 0.6 (5)
N4—Fe1—N3—C9 −173.5 (3) C9—N3—C13—C12 −0.3 (4)
N2—Fe1—N3—C9 29.6 (3) Fe1—N3—C13—C12 −174.0 (2)
Cl1—Fe1—N3—C9 −65.4 (2) C9—N3—C13—C14 178.4 (2)
N1—Fe1—N3—C13 −37.0 (4) Fe1—N3—C13—C14 4.7 (3)
N4—Fe1—N3—C13 −0.60 (19) C11—C12—C13—N3 −0.8 (5)
N2—Fe1—N3—C13 −157.53 (18) C11—C12—C13—C14 −179.4 (3)
Cl1—Fe1—N3—C13 107.44 (18) C20—N4—C14—O2 1.6 (5)
N1—Fe1—N4—C14 164.8 (2) Fe1—N4—C14—O2 −171.3 (3)
N3—Fe1—N4—C14 −4.1 (2) C20—N4—C14—C13 −179.7 (2)
N2—Fe1—N4—C14 112.5 (3) Fe1—N4—C14—C13 7.5 (3)
Cl1—Fe1—N4—C14 −95.4 (2) N3—C13—C14—O2 171.0 (3)
N1—Fe1—N4—C20 −8.8 (2) C12—C13—C14—O2 −10.3 (4)
N3—Fe1—N4—C20 −177.7 (2) N3—C13—C14—N4 −7.8 (4)
N2—Fe1—N4—C20 −61.1 (3) C12—C13—C14—N4 170.9 (3)
Cl1—Fe1—N4—C20 91.03 (19) C1—N1—C15—C16 1.3 (5)
C15—N1—C1—O1 4.1 (6) Fe1—N1—C15—C16 174.3 (3)
Fe1—N1—C1—O1 −168.8 (3) C1—N1—C15—C20 178.5 (3)
C15—N1—C1—C2 −174.1 (3) Fe1—N1—C15—C20 −8.6 (3)
Fe1—N1—C1—C2 13.1 (3) C20—C15—C16—C17 1.3 (5)
C6—N2—C2—C3 −3.4 (4) N1—C15—C16—C17 178.3 (3)
Fe1—N2—C2—C3 168.4 (3) C15—C16—C17—C18 0.7 (6)
C6—N2—C2—C1 175.0 (3) C16—C17—C18—C19 −1.0 (6)
Fe1—N2—C2—C1 −13.2 (3) C17—C18—C19—C20 −0.8 (5)
O1—C1—C2—N2 −176.9 (3) C18—C19—C20—C15 2.8 (5)
N1—C1—C2—N2 1.3 (4) C18—C19—C20—N4 −179.2 (3)
O1—C1—C2—C3 1.5 (5) C16—C15—C20—C19 −3.1 (5)
N1—C1—C2—C3 179.8 (3) N1—C15—C20—C19 179.5 (3)
N2—C2—C3—C4 0.8 (5) C16—C15—C20—N4 178.7 (3)
C1—C2—C3—C4 −177.5 (3) N1—C15—C20—N4 1.3 (4)
C2—C3—C4—C5 1.6 (5) C14—N4—C20—C19 15.3 (5)
C3—C4—C5—C6 −1.5 (5) Fe1—N4—C20—C19 −171.7 (2)
C2—N2—C6—C5 3.4 (4) C14—N4—C20—C15 −166.7 (3)
Fe1—N2—C6—C5 −166.4 (2) Fe1—N4—C20—C15 6.4 (3)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C3—H3A···Cl1i 0.93 2.80 3.595 (4) 144
C10—H10A···Cl1ii 0.93 2.71 3.617 (3) 165
C11—H11A···O1iii 0.93 2.46 3.290 (5) 149

Symmetry codes: (i) −x+1/2, y+1/2, −z+3/2; (ii) −x+3/2, y+1/2, −z+3/2; (iii) x+1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI2736).

References

  1. Bruker (1997). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Liu, H. H., Wang, Y., Shu, Y. J., Zhou, X. G., Wu, J. & Yan, S. Y. (2006). J. Mol. Catal. A Chem.246, 49–52.
  3. Momenteau, M. & Reed, C. A. (1994). Chem. Rev.94, 659–698.
  4. Rath, S. P., Kalish, H., Latos-Grazyński, L. Olmstead, M. M. & Balch, A. L. (2004). J. Am. Chem. Soc.126, 646–654. [DOI] [PubMed]
  5. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  7. Xu, X.-B., Yang, L., Qu, Y.-Y., Li, L.-X. & Zhou, X.-G. (2007). Acta Cryst. E63, m1790.
  8. Yang, L., Wei, R. L., Li, R., Zhou, X. G. & Zuo, J. L. (2007). J. Mol. Catal. A Chem.266, 284–289.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808041354/ci2736sup1.cif

e-65-00m44-sup1.cif (22.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808041354/ci2736Isup2.hkl

e-65-00m44-Isup2.hkl (203KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES