Abstract
To examine the ability of the skeletal muscle of congestive heart failure (CHF) patients to adapt to chronic exercise, five patients performed localized nondominant wrist flexor training for 28 d. Inorganic phosphate (Pi) and phosphocreatine (PCr) were monitored by magnetic resonance spectroscopy in both forearms at rest and during submaximal wrist flexion exercise at 6, 12, 24, and 36 J.min-1 before and after exercise training. Simultaneous measurements of limb blood flow were made by plethysmography at 12, 24, and 36 J.min-1. Forearm muscle mass and endurance were measured by magnetic resonance imaging and wrist flexion exercise before and after training. The Pi/PCr ratio and pH were calculated from the measured Pi and PCr. Exercise cardiac output, heart rate, plasma norepinephrine, and lactate measured during training were not elevated above resting values, confirming that training was localized to the forearm flexor muscles. After training, muscle bioenergetics, as assessed by the slope of the regression line relating Pi/PCr to submaximal workloads, were improved in the trained forearm of each patient, although muscle mass, limb blood flow, and pH were unchanged. Forearm endurance increased by greater than 260% after training. In the dominant untrained forearm, none of the measured indices were affected. We conclude that localized forearm exercise training in CHF patients improves muscle energetics at submaximal workloads in the trained muscle, an effect which is independent of muscle mass, limb blood flow, or a central cardiovascular response during training. These findings indicate that peripheral muscle metabolic and functional abnormalities in CHF can be improved without altering cardiac performance.
Full text
PDFImages in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bergman H., Björntorp P., Conradson T. B., Fahlén M., Stenberg J., Varnauskas E. Enzymatic and circulatory adjustments to physical training in middle-aged men. Eur J Clin Invest. 1973 Sep;3(5):414–418. doi: 10.1111/j.1365-2362.1973.tb02209.x. [DOI] [PubMed] [Google Scholar]
- Chance B., Leigh J. S., Jr, Clark B. J., Maris J., Kent J., Nioka S., Smith D. Control of oxidative metabolism and oxygen delivery in human skeletal muscle: a steady-state analysis of the work/energy cost transfer function. Proc Natl Acad Sci U S A. 1985 Dec;82(24):8384–8388. doi: 10.1073/pnas.82.24.8384. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chance B., Leigh J. S., Jr, Kent J., McCully K. Metabolic control principles and 31P NMR. Fed Proc. 1986 Dec;45(13):2915–2920. [PubMed] [Google Scholar]
- Dudley G. A., Tullson P. C., Terjung R. L. Influence of mitochondrial content on the sensitivity of respiratory control. J Biol Chem. 1987 Jul 5;262(19):9109–9114. [PubMed] [Google Scholar]
- Franciosa J. A., Ziesche S., Wilen M. Functional capacity of patients with chronic left ventricular failure. Relationship of bicycle exercise performance to clinical and hemodynamic characterization. Am J Med. 1979 Sep;67(3):460–466. doi: 10.1016/0002-9343(79)90794-0. [DOI] [PubMed] [Google Scholar]
- Gollnick P. D., Saltin B. Significance of skeletal muscle oxidative enzyme enhancement with endurance training. Clin Physiol. 1982 Feb;2(1):1–12. doi: 10.1111/j.1475-097x.1982.tb00001.x. [DOI] [PubMed] [Google Scholar]
- Lipkin D. P., Jones D. A., Round J. M., Poole-Wilson P. A. Abnormalities of skeletal muscle in patients with chronic heart failure. Int J Cardiol. 1988 Feb;18(2):187–195. doi: 10.1016/0167-5273(88)90164-7. [DOI] [PubMed] [Google Scholar]
- Mackie B. G., Terjung R. L. Influence of training on blood flow to different skeletal muscle fiber types. J Appl Physiol Respir Environ Exerc Physiol. 1983 Oct;55(4):1072–1078. doi: 10.1152/jappl.1983.55.4.1072. [DOI] [PubMed] [Google Scholar]
- Massie B. M., Conway M., Rajagopalan B., Yonge R., Frostick S., Ledingham J., Sleight P., Radda G. Skeletal muscle metabolism during exercise under ischemic conditions in congestive heart failure. Evidence for abnormalities unrelated to blood flow. Circulation. 1988 Aug;78(2):320–326. doi: 10.1161/01.cir.78.2.320. [DOI] [PubMed] [Google Scholar]
- Massie B., Conway M., Yonge R., Frostick S., Ledingham J., Sleight P., Radda G., Rajagopalan B. Skeletal muscle metabolism in patients with congestive heart failure: relation to clinical severity and blood flow. Circulation. 1987 Nov;76(5):1009–1019. doi: 10.1161/01.cir.76.5.1009. [DOI] [PubMed] [Google Scholar]
- Minotti J. R., Johnson E. C., Hudson T. L., Sibbitt R. R., Wise L. E., Fukushima E., Icenogle M. V. Forearm metabolic asymmetry detected by 31P-NMR during submaximal exercise. J Appl Physiol (1985) 1989 Jul;67(1):324–329. doi: 10.1152/jappl.1989.67.1.324. [DOI] [PubMed] [Google Scholar]
- Minotti J. R., Johnson E. C., Hudson T. L., Zuroske G., Fukushima E., Murata G., Wise L. E., Chick T. W., Icenogle M. V. Training-induced skeletal muscle adaptations are independent of systemic adaptations. J Appl Physiol (1985) 1990 Jan;68(1):289–294. doi: 10.1152/jappl.1990.68.1.289. [DOI] [PubMed] [Google Scholar]
- Moritani T., deVries H. A. Neural factors versus hypertrophy in the time course of muscle strength gain. Am J Phys Med. 1979 Jun;58(3):115–130. [PubMed] [Google Scholar]
- Sale D. G. Influence of exercise and training on motor unit activation. Exerc Sport Sci Rev. 1987;15:95–151. [PubMed] [Google Scholar]
- Saltin B., Nazar K., Costill D. L., Stein E., Jansson E., Essén B., Gollnick D. The nature of the training response; peripheral and central adaptations of one-legged exercise. Acta Physiol Scand. 1976 Mar;96(3):289–305. doi: 10.1111/j.1748-1716.1976.tb10200.x. [DOI] [PubMed] [Google Scholar]
- Sinoway L. I., Minotti J. R., Davis D., Pennock J. L., Burg J. E., Musch T. I., Zelis R. Delayed reversal of impaired vasodilation in congestive heart failure after heart transplantation. Am J Cardiol. 1988 May 1;61(13):1076–1079. doi: 10.1016/0002-9149(88)90129-4. [DOI] [PubMed] [Google Scholar]
- Sullivan M. J., Higginbotham M. B., Cobb F. R. Exercise training in patients with severe left ventricular dysfunction. Hemodynamic and metabolic effects. Circulation. 1988 Sep;78(3):506–515. doi: 10.1161/01.cir.78.3.506. [DOI] [PubMed] [Google Scholar]
- Szlachcic J., Massie B. M., Kramer B. L., Topic N., Tubau J. Correlates and prognostic implication of exercise capacity in chronic congestive heart failure. Am J Cardiol. 1985 Apr 1;55(8):1037–1042. doi: 10.1016/0002-9149(85)90742-8. [DOI] [PubMed] [Google Scholar]
- Taylor D. J., Styles P., Matthews P. M., Arnold D. A., Gadian D. G., Bore P., Radda G. K. Energetics of human muscle: exercise-induced ATP depletion. Magn Reson Med. 1986 Feb;3(1):44–54. doi: 10.1002/mrm.1910030107. [DOI] [PubMed] [Google Scholar]
- Varnauskas E., Björntorp P., Fahlén M., Prerovský I., Stenberg J. Effects of physical training on exercise blood flow and enzymatic activity in skeletal muscle. Cardiovasc Res. 1970 Oct;4(4):418–422. doi: 10.1093/cvr/4.4.418. [DOI] [PubMed] [Google Scholar]
- WHITNEY R. J. The measurement of volume changes in human limbs. J Physiol. 1953 Jul;121(1):1–27. doi: 10.1113/jphysiol.1953.sp004926. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wiener D. H., Fink L. I., Maris J., Jones R. A., Chance B., Wilson J. R. Abnormal skeletal muscle bioenergetics during exercise in patients with heart failure: role of reduced muscle blood flow. Circulation. 1986 Jun;73(6):1127–1136. doi: 10.1161/01.cir.73.6.1127. [DOI] [PubMed] [Google Scholar]
- Wiener D. H., Maris J., Chance B., Wilson J. R. Detection of skeletal muscle hypoperfusion during exercise using phosphorus-31 nuclear magnetic resonance spectroscopy. J Am Coll Cardiol. 1986 Apr;7(4):793–799. doi: 10.1016/s0735-1097(86)80338-2. [DOI] [PubMed] [Google Scholar]
- Wilson J. R., Ferraro N. Exercise intolerance in patients with chronic left heart failure: relation to oxygen transport and ventilatory abnormalities. Am J Cardiol. 1983 May 1;51(8):1358–1363. doi: 10.1016/0002-9149(83)90312-0. [DOI] [PubMed] [Google Scholar]
- Wilson J. R., Fink L., Maris J., Ferraro N., Power-Vanwart J., Eleff S., Chance B. Evaluation of energy metabolism in skeletal muscle of patients with heart failure with gated phosphorus-31 nuclear magnetic resonance. Circulation. 1985 Jan;71(1):57–62. doi: 10.1161/01.cir.71.1.57. [DOI] [PubMed] [Google Scholar]
- Wilson J. R., Martin J. L., Ferraro N. Impaired skeletal muscle nutritive flow during exercise in patients with congestive heart failure: role of cardiac pump dysfunction as determined by the effect of dobutamine. Am J Cardiol. 1984 May 1;53(9):1308–1315. doi: 10.1016/0002-9149(84)90085-7. [DOI] [PubMed] [Google Scholar]
- Zelis R., Longhurst J., Capone R. J., Mason D. T. A comparison of regional blood flow and oxygen utilization during dynamic forearm exercise in normal subjects and patients with congestive heart failure. Circulation. 1974 Jul;50(1):137–143. doi: 10.1161/01.cir.50.1.137. [DOI] [PubMed] [Google Scholar]
- Zelis R., Mason D. T., Braunwald E. A comparison of the effects of vasodilator stimuli on peripheral resistance vessels in normal subjects and in patients with congestive heart failure. J Clin Invest. 1968 Apr;47(4):960–970. doi: 10.1172/JCI105788. [DOI] [PMC free article] [PubMed] [Google Scholar]