Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Dec 13;65(Pt 1):m70. doi: 10.1107/S1600536808041925

catena-Poly[[[N,N′-bis­(3-methoxy­benzyl­idene)ethyl­enediamine]copper(I)]-μ-thio­cyanato-κ2 N:S]

Aliakbar Dehno Khalaji a,, Hassan Hadadzadeh a, Kazuma Gotoh b, Hiroyuki Ishida b,*
PMCID: PMC2967908  PMID: 21581537

Abstract

In the cyrstal structure of the title compound, [Cu(NCS)(C18H20N2O2)]n, the CuI atom is coordinated in a distorted tetra­hedral geometry by two imino N atoms from a bidentate chelating Schiff base ligand, and one N and one S atoms from two thio­cyanate anions. The thio­cyanate anion bridges the CuI atoms, forming a zigzag chain along [101]. The Schiff base ligand adopts an E,E configuration and the dihedral angle between the terminal benzene rings is 53.68 (8)°.

Related literature

For related copper(I) complexes with bidentate ligands, see: Amirnasr et al. (2006); Khalaji, Brad & Zhang (2008); Khalaji, Welter et al. (2008); Khalaji & Welter (2006); Zhao et al. (2008).graphic file with name e-65-00m70-scheme1.jpg

Experimental

Crystal data

  • [Cu(NCS)(C18H20N2O2)]

  • M r = 417.99

  • Monoclinic, Inline graphic

  • a = 8.1316 (3) Å

  • b = 23.5113 (9) Å

  • c = 10.1597 (4) Å

  • β = 107.1245 (15)°

  • V = 1856.27 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.31 mm−1

  • T = 193 (1) K

  • 0.31 × 0.17 × 0.02 mm

Data collection

  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: numerical (ABSCOR; Higashi, 1995) T min = 0.771, T max = 0.974

  • 28362 measured reflections

  • 5395 independent reflections

  • 4614 reflections with I > 2σ(I)

  • R int = 0.031

Refinement

  • R[F 2 > 2σ(F 2)] = 0.030

  • wR(F 2) = 0.076

  • S = 1.05

  • 5395 reflections

  • 235 parameters

  • H-atom parameters constrained

  • Δρmax = 0.51 e Å−3

  • Δρmin = −0.23 e Å−3

Data collection: PROCESS-AUTO (Rigaku/MSC, 2004); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: CrystalStructure and PLATON (Spek, 2003).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808041925/lh2744sup1.cif

e-65-00m70-sup1.cif (21KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808041925/lh2744Isup2.hkl

e-65-00m70-Isup2.hkl (264.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected bond lengths (Å).

Cu1—S1 2.3130 (4)
Cu1—N1i 1.9347 (12)
Cu1—N2 2.0917 (12)
Cu1—N3 2.0900 (13)

Symmetry code: (i) Inline graphic.

supplementary crystallographic information

Comment

Synthesis and characterization of copper(I) complexes with bidentate chelating Schiff base ligands have received much attention in recent years (Khalaji, Brad & Zhang, 2008; Khalaji, Welter et al., 2008; Zhao et al., 2008). Depending on the ligands involved, copper(I) complexes can show a wide variety of structures (Amirnasr et al., 2006; Khalaji & Welter, 2006; Khalaji, Brad & Zhang, 2008; Khalaji, Welter et al., 2008). As part of a general study of transition metal complexes with bidentate chelating Schiff base ligands (Khalaji & Welter, 2006; Khalaji, Brad & Zhang, 2008; Khalaji, Welter et al., 2008), here, we reported the synthesis and the crystal structure of the title compound, (I).

The crystal structure of the title compound, (I), is shown in Fig. 1. The Schiff base (3-MeO-ba)2en ligand chelates the CuI atom to form a five-membered ring, with N2—Cu1—N3 = 83.78 (4)°, which is in good agreement with the corresponding angles in related complexes (Khalaji & Welter, 2006; Khalaji, Brad & Zhang, 2008; Khalaji, Welter et al., 2008). The Cu—N and Cu—S distances (Table 1) are similar to those in the other copper(I) complexes. The C12—N3 and C9—N2 bond lengths of 1.2717 (18) and 1.2665 (18) Å, respectively, conform to the value for a C=N double bond, while the N2—C10 and N3—C11 bond lengths of 1.462 (2) and 1.476 (2) Å, respectively, conform to the value for a C—N single bond. These C—N lengths are comparable to the corresponding values observed in other tetrahedral copper(I) complexes with bidentate chelating Schiff base ligands (Khalaji & Welter, 2006; Khalaji, Brad & Zhang, 2008; Khalaji, Welter et al., 2008). The bidentate chelating (3-MeO-ba)2en ligand adopts an E,E configuration in this structure.

Experimental

The title compound, (I), was synthesized using a method analogous to the literature procedure (Khalaji & Welter, 2006), except that CuI was replaced with CuNCS. Single crystals suitable for data collection were obtained by slow evaporation from an acetonitrile solution at 273 K.

Refinement

H atoms were positioned geometrically (C—H = 0.95–0.99 Å) and treated as riding, with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound with atom-labeling scheme. Displacement ellipsoids are drawn at the 50% probability level.

Fig. 2.

Fig. 2.

A partial packing view of the title compound, (I).

Crystal data

[Cu(NCS)(C18H20N2O2)] F(000) = 864.00
Mr = 417.99 Dx = 1.496 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71075 Å
Hall symbol: -P 2yn Cell parameters from 22727 reflections
a = 8.1316 (3) Å θ = 3.1–30.0°
b = 23.5113 (9) Å µ = 1.31 mm1
c = 10.1597 (4) Å T = 193 K
β = 107.1245 (15)° Platelet, yellow
V = 1856.27 (11) Å3 0.31 × 0.17 × 0.02 mm
Z = 4

Data collection

Rigaku R-AXIS RAPID diffractometer 4614 reflections with I > 2σ(I)
Detector resolution: 10.00 pixels mm-1 Rint = 0.031
ω scans θmax = 30.0°, θmin = 3.1°
Absorption correction: numerical (ABSCOR; Higashi, 1995) h = −10→11
Tmin = 0.771, Tmax = 0.974 k = −32→32
28362 measured reflections l = −14→12
5395 independent reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.076 H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0358P)2 + 0.7637P] where P = (Fo2 + 2Fc2)/3
5395 reflections (Δ/σ)max = 0.001
235 parameters Δρmax = 0.51 e Å3
0 restraints Δρmin = −0.23 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cu1 0.42300 (2) 0.235166 (8) 0.471370 (18) 0.02525 (6)
S1 0.16168 (5) 0.188164 (18) 0.41646 (4) 0.03209 (9)
O1 −0.06043 (17) 0.34954 (5) 0.56184 (14) 0.0406 (3)
O2 0.46009 (18) 0.04893 (6) 0.71225 (15) 0.0472 (3)
N1 0.01289 (17) 0.24053 (6) 0.16100 (13) 0.0302 (3)
N2 0.41448 (15) 0.30353 (5) 0.33778 (12) 0.0248 (2)
N3 0.61360 (15) 0.20470 (5) 0.38943 (12) 0.0245 (2)
C1 0.07436 (18) 0.21886 (6) 0.26548 (15) 0.0255 (3)
C2 0.3075 (2) 0.38111 (6) 0.44500 (16) 0.0277 (3)
C3 0.1706 (2) 0.35321 (6) 0.47169 (16) 0.0281 (3)
H3 0.1399 0.3160 0.4364 0.034*
C4 0.0781 (2) 0.37944 (6) 0.55001 (15) 0.0294 (3)
C5 0.1271 (2) 0.43268 (7) 0.60751 (18) 0.0374 (4)
H5 0.0657 0.4504 0.6626 0.045*
C6 0.2674 (3) 0.45947 (8) 0.5830 (2) 0.0476 (5)
H6 0.3037 0.4954 0.6240 0.057*
C7 0.3549 (2) 0.43480 (7) 0.5002 (2) 0.0411 (4)
H7 0.4472 0.4545 0.4809 0.049*
C8 −0.1738 (2) 0.37722 (8) 0.6249 (2) 0.0428 (4)
H8A −0.1147 0.3833 0.7228 0.064*
H8B −0.2757 0.3534 0.6151 0.064*
H8C −0.2091 0.4140 0.5800 0.064*
C9 0.39553 (19) 0.35649 (6) 0.35092 (16) 0.0283 (3)
H9 0.4406 0.3817 0.2971 0.034*
C10 0.4946 (2) 0.28431 (7) 0.23429 (15) 0.0289 (3)
H10A 0.5255 0.3175 0.1866 0.035*
H10B 0.4127 0.2604 0.1649 0.035*
C11 0.6547 (2) 0.25029 (7) 0.30428 (17) 0.0299 (3)
H11A 0.7020 0.2334 0.2338 0.036*
H11B 0.7432 0.2758 0.3631 0.036*
C12 0.70674 (18) 0.16036 (6) 0.40348 (16) 0.0277 (3)
H12 0.7894 0.1591 0.3541 0.033*
C13 0.6977 (2) 0.11098 (6) 0.48926 (16) 0.0291 (3)
C14 0.8217 (3) 0.06895 (8) 0.5020 (2) 0.0423 (4)
H14 0.9060 0.0724 0.4547 0.051*
C15 0.8215 (3) 0.02186 (8) 0.5846 (2) 0.0531 (5)
H15 0.9069 −0.0067 0.5942 0.064*
C16 0.6993 (3) 0.01612 (7) 0.6521 (2) 0.0471 (5)
H16 0.6997 −0.0165 0.7075 0.056*
C17 0.5745 (2) 0.05804 (7) 0.63967 (18) 0.0359 (3)
C18 0.5742 (2) 0.10550 (7) 0.55896 (17) 0.0307 (3)
H18 0.4900 0.1343 0.5511 0.037*
C19 0.3301 (3) 0.09082 (10) 0.7005 (2) 0.0532 (5)
H19A 0.3841 0.1279 0.7280 0.080*
H19B 0.2599 0.0807 0.7606 0.080*
H19C 0.2569 0.0927 0.6048 0.080*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cu1 0.02571 (10) 0.02875 (10) 0.02277 (9) −0.00058 (7) 0.00944 (7) 0.00156 (6)
S1 0.02396 (18) 0.0417 (2) 0.02944 (18) −0.00463 (15) 0.00609 (14) 0.01091 (15)
O1 0.0427 (7) 0.0376 (6) 0.0521 (7) −0.0008 (5) 0.0304 (6) −0.0038 (5)
O2 0.0445 (7) 0.0437 (7) 0.0519 (8) −0.0052 (6) 0.0118 (6) 0.0206 (6)
N1 0.0276 (6) 0.0381 (7) 0.0254 (6) −0.0013 (5) 0.0084 (5) −0.0009 (5)
N2 0.0246 (6) 0.0277 (6) 0.0243 (6) 0.0011 (5) 0.0103 (4) 0.0022 (4)
N3 0.0219 (6) 0.0267 (6) 0.0265 (6) −0.0017 (4) 0.0097 (4) −0.0012 (5)
C1 0.0207 (6) 0.0308 (7) 0.0267 (7) −0.0019 (5) 0.0094 (5) −0.0021 (5)
C2 0.0309 (7) 0.0231 (6) 0.0304 (7) 0.0032 (5) 0.0109 (6) 0.0021 (5)
C3 0.0325 (8) 0.0231 (6) 0.0310 (7) 0.0022 (5) 0.0127 (6) −0.0001 (5)
C4 0.0332 (8) 0.0288 (7) 0.0286 (7) 0.0039 (6) 0.0127 (6) 0.0026 (6)
C5 0.0460 (10) 0.0326 (8) 0.0382 (9) 0.0058 (7) 0.0193 (7) −0.0056 (7)
C6 0.0555 (12) 0.0295 (8) 0.0619 (12) −0.0046 (8) 0.0238 (10) −0.0167 (8)
C7 0.0429 (10) 0.0291 (8) 0.0558 (11) −0.0066 (7) 0.0218 (8) −0.0073 (7)
C8 0.0414 (10) 0.0485 (10) 0.0466 (10) 0.0115 (8) 0.0253 (8) 0.0059 (8)
C9 0.0289 (7) 0.0272 (7) 0.0308 (7) 0.0003 (5) 0.0122 (6) 0.0047 (6)
C10 0.0337 (8) 0.0311 (7) 0.0262 (7) 0.0027 (6) 0.0156 (6) 0.0025 (6)
C11 0.0282 (7) 0.0314 (7) 0.0349 (8) −0.0005 (6) 0.0170 (6) 0.0022 (6)
C12 0.0218 (7) 0.0315 (7) 0.0310 (7) −0.0002 (5) 0.0096 (5) −0.0033 (6)
C13 0.0280 (7) 0.0268 (7) 0.0300 (7) 0.0022 (6) 0.0048 (6) −0.0038 (6)
C14 0.0468 (10) 0.0380 (9) 0.0434 (10) 0.0151 (8) 0.0154 (8) −0.0034 (7)
C15 0.0703 (14) 0.0342 (9) 0.0539 (11) 0.0251 (9) 0.0167 (10) 0.0000 (8)
C16 0.0649 (13) 0.0244 (7) 0.0448 (10) 0.0057 (8) 0.0052 (9) 0.0040 (7)
C17 0.0369 (9) 0.0293 (7) 0.0363 (8) −0.0051 (6) 0.0026 (7) 0.0032 (6)
C18 0.0270 (7) 0.0266 (7) 0.0358 (8) 0.0002 (6) 0.0050 (6) 0.0030 (6)
C19 0.0392 (10) 0.0670 (13) 0.0561 (12) −0.0005 (9) 0.0183 (9) 0.0273 (10)

Geometric parameters (Å, °)

Cu1—S1 2.3130 (4) C14—C15 1.389 (2)
Cu1—N1i 1.9347 (12) C15—C16 1.370 (3)
Cu1—N2 2.0917 (12) C16—C17 1.394 (2)
Cu1—N3 2.0900 (13) C17—C18 1.384 (2)
S1—C1 1.6542 (14) C3—H3 0.950
O1—C4 1.363 (2) C5—H5 0.950
O1—C8 1.425 (2) C6—H6 0.950
O2—C17 1.364 (2) C7—H7 0.950
O2—C19 1.424 (2) C8—H8A 0.980
N1—C1 1.1505 (18) C8—H8B 0.980
N2—C9 1.2665 (18) C8—H8C 0.980
N2—C10 1.462 (2) C9—H9 0.950
N3—C11 1.476 (2) C10—H10A 0.990
N3—C12 1.2717 (18) C10—H10B 0.990
C2—C3 1.386 (2) C11—H11A 0.990
C2—C7 1.389 (2) C11—H11B 0.990
C2—C9 1.471 (2) C12—H12 0.950
C3—C4 1.390 (2) C14—H14 0.950
C4—C5 1.389 (2) C15—H15 0.950
C5—C6 1.388 (3) C16—H16 0.950
C6—C7 1.380 (3) C18—H18 0.950
C10—C11 1.515 (2) C19—H19A 0.980
C12—C13 1.467 (2) C19—H19B 0.980
C13—C14 1.390 (2) C19—H19C 0.980
C13—C18 1.394 (2)
S1—Cu1—N1i 115.61 (4) C4—C3—H3 119.9
S1—Cu1—N2 110.98 (3) C4—C5—H5 120.6
S1—Cu1—N3 118.46 (3) C6—C5—H5 120.6
N1i—Cu1—N2 110.48 (5) C5—C6—H6 119.4
N1i—Cu1—N3 113.01 (5) C7—C6—H6 119.4
N2—Cu1—N3 83.78 (4) C2—C7—H7 120.1
Cu1—S1—C1 97.37 (5) C6—C7—H7 120.1
C4—O1—C8 117.71 (13) O1—C8—H8A 109.5
C17—O2—C19 117.00 (15) O1—C8—H8B 109.5
Cu1ii—N1—C1 169.62 (13) O1—C8—H8C 109.5
Cu1—N2—C9 131.98 (11) H8A—C8—H8B 109.5
Cu1—N2—C10 107.01 (8) H8A—C8—H8C 109.5
C9—N2—C10 118.26 (14) H8B—C8—H8C 109.5
Cu1—N3—C11 107.88 (9) N2—C9—H9 118.2
Cu1—N3—C12 136.32 (11) C2—C9—H9 118.2
C11—N3—C12 115.52 (14) N2—C10—H10A 109.8
S1—C1—N1 179.41 (15) N2—C10—H10B 109.8
C3—C2—C7 119.65 (17) C11—C10—H10A 109.8
C3—C2—C9 120.89 (13) C11—C10—H10B 109.8
C7—C2—C9 119.31 (16) H10A—C10—H10B 108.3
C2—C3—C4 120.22 (13) N3—C11—H11A 109.6
O1—C4—C3 114.99 (12) N3—C11—H11B 109.6
O1—C4—C5 124.75 (16) C10—C11—H11A 109.6
C3—C4—C5 120.26 (16) C10—C11—H11B 109.6
C4—C5—C6 118.86 (18) H11A—C11—H11B 108.1
C5—C6—C7 121.14 (17) N3—C12—H12 117.2
C2—C7—C6 119.77 (18) C13—C12—H12 117.2
N2—C9—C2 123.57 (15) C13—C14—H14 120.2
N2—C10—C11 109.21 (12) C15—C14—H14 120.2
N3—C11—C10 110.28 (13) C14—C15—H15 119.7
N3—C12—C13 125.68 (15) C16—C15—H15 119.6
C12—C13—C14 117.15 (16) C15—C16—H16 120.0
C12—C13—C18 123.00 (14) C17—C16—H16 120.0
C14—C13—C18 119.84 (15) C13—C18—H18 120.0
C13—C14—C15 119.6 (2) C17—C18—H18 120.0
C14—C15—C16 120.70 (19) O2—C19—H19A 109.5
C15—C16—C17 120.06 (17) O2—C19—H19B 109.5
O2—C17—C16 115.76 (16) O2—C19—H19C 109.5
O2—C17—C18 124.37 (15) H19A—C19—H19B 109.5
C16—C17—C18 119.87 (18) H19A—C19—H19C 109.5
C13—C18—C17 119.96 (15) H19B—C19—H19C 109.5
C2—C3—H3 119.9
S1—Cu1—N1i—C1i −141.8 (7) C11—N3—C12—C13 176.20 (12)
N1i—Cu1—S1—C1 138.73 (7) C12—N3—C11—C10 150.57 (12)
S1—Cu1—N2—C9 100.29 (12) C3—C2—C7—C6 1.2 (2)
S1—Cu1—N2—C10 −99.44 (8) C7—C2—C3—C4 1.8 (2)
N2—Cu1—S1—C1 11.92 (7) C3—C2—C9—N2 −33.1 (2)
S1—Cu1—N3—C11 119.32 (7) C9—C2—C3—C4 −173.74 (12)
S1—Cu1—N3—C12 −67.25 (13) C7—C2—C9—N2 151.34 (14)
N3—Cu1—S1—C1 −82.44 (6) C9—C2—C7—C6 176.78 (15)
N1i—Cu1—N2—C9 −29.30 (14) C2—C3—C4—O1 175.86 (12)
N1i—Cu1—N2—C10 130.97 (8) C2—C3—C4—C5 −3.0 (2)
N2—Cu1—N1i—C1i −14.7 (7) O1—C4—C5—C6 −177.52 (14)
N1i—Cu1—N3—C11 −100.84 (9) C3—C4—C5—C6 1.3 (2)
N1i—Cu1—N3—C12 72.59 (14) C4—C5—C6—C7 1.7 (2)
N3—Cu1—N1i—C1i 77.2 (7) C5—C6—C7—C2 −3.0 (2)
N2—Cu1—N3—C11 8.80 (8) N2—C10—C11—N3 52.70 (16)
N2—Cu1—N3—C12 −177.78 (13) N3—C12—C13—C14 −173.84 (14)
N3—Cu1—N2—C9 −141.57 (13) N3—C12—C13—C18 4.8 (2)
N3—Cu1—N2—C10 18.70 (8) C12—C13—C14—C15 178.56 (15)
C8—O1—C4—C3 −171.75 (13) C12—C13—C18—C17 −179.16 (13)
C8—O1—C4—C5 7.1 (2) C14—C13—C18—C17 −0.6 (2)
C19—O2—C17—C16 −179.45 (15) C18—C13—C14—C15 −0.1 (2)
C19—O2—C17—C18 1.5 (2) C13—C14—C15—C16 0.7 (2)
Cu1—N2—C9—C2 −25.4 (2) C14—C15—C16—C17 −0.7 (2)
Cu1—N2—C10—C11 −42.47 (13) C15—C16—C17—O2 −179.10 (15)
C9—N2—C10—C11 120.98 (14) C15—C16—C17—C18 −0.0 (2)
C10—N2—C9—C2 176.11 (11) O2—C17—C18—C13 179.63 (14)
Cu1—N3—C11—C10 −34.46 (13) C16—C17—C18—C13 0.6 (2)
Cu1—N3—C12—C13 3.1 (2)

Symmetry codes: (i) x+1/2, −y+1/2, z+1/2; (ii) x−1/2, −y+1/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH2744).

References

  1. Amirnasr, M., Khalaji, A. D. & Falvello, L. R. (2006). Inorg. Chim. Acta, 359, 713–717.
  2. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  3. Higashi, T. (1995). ABSCOR Rigaku Corporation, Tokyo, Japan.
  4. Khalaji, A. D., Brad, K. & Zhang, Y. (2008). Acta Cryst. E64, m189. [DOI] [PMC free article] [PubMed]
  5. Khalaji, A. D. & Welter, R. (2006). Inorg. Chim. Acta, 359, 4403–4406.
  6. Khalaji, A. D., Welter, R., Amirnasr, M. & Barry, A. H. (2008). Anal. Sci.24, x137–x138.
  7. Rigaku/MSC (2004). CrystalStructure and PROCESS-AUTO Rigaku/MSC, The Woodlands, Texas, USA.
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
  10. Zhao, J., Dong, W.-W., Li, D.-S. & He, Q.-F. (2008). Acta Cryst. E64, m1576. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808041925/lh2744sup1.cif

e-65-00m70-sup1.cif (21KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808041925/lh2744Isup2.hkl

e-65-00m70-Isup2.hkl (264.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES