Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Dec 17;65(Pt 1):m96. doi: 10.1107/S1600536808042244

Bis(η7-cyclo­hepta­trien­yl)tri-μ-hydrido-dimolybdenum(0,I)

Peter G Jones a,*, Cristian G Hrib a, Sören Randoll a, Xian Wu a, Matthias Tamm a
PMCID: PMC2967928  PMID: 21581559

Abstract

In the title compound, [Mo27-C7H7)2(μ-H)3], which displays crystallographic mirror symmetry, two (η7-C7H7)Mo units are linked along the Mo—Mo axis by three bridging hydride ligands. The Mo—Mo distance is 2.5732 (4) Å. The perpendicular distances of the Mo atoms from the C7 planes are 1.5827 (8) and 1.5814 (8) Å, with individual Mo—C bond lengths in the range 2.261 (2)–2.2789 (14) Å. Mo—H distances range from 1.77 (3) to 1.85 (4) Å, with Mo—H—Mo angles of 89 (2) and 92 (1)°.

Related literature

For related literature, see: Alvarez et al. (2006); Darensbourg et al. (1980); Jones et al. (1980); Lin et al. (1993); Süss-Fink & Therrien (2007); Petersen et al. (1981); Shima & Suzuki (2005); Tamm et al. (2004, 2006). graphic file with name e-65-00m96-scheme1.jpg

Experimental

Crystal data

  • [Mo2(C7H7)2H3]

  • M r = 377.16

  • Orthorhombic, Inline graphic

  • a = 17.844 (2) Å

  • b = 11.3036 (16) Å

  • c = 6.2981 (8) Å

  • V = 1270.3 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.94 mm−1

  • T = 133 (2) K

  • 0.38 × 0.20 × 0.04 mm

Data collection

  • Bruker SMART 1000 CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1998) T min = 0.526, T max = 0.926

  • 25354 measured reflections

  • 2023 independent reflections

  • 1871 reflections with I > 2σ(I)

  • R int = 0.026

Refinement

  • R[F 2 > 2σ(F 2)] = 0.015

  • wR(F 2) = 0.041

  • S = 1.06

  • 2023 reflections

  • 86 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.48 e Å−3

  • Δρmin = −0.41 e Å−3

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP (Siemens, 1994); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808042244/bt2832sup1.cif

e-65-00m96-sup1.cif (24KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808042244/bt2832Isup2.hkl

e-65-00m96-Isup2.hkl (99.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected geometric parameters (Å, °).

Mo1—C1 2.261 (2)
Mo1—C3 2.2638 (14)
Mo1—C2 2.2740 (15)
Mo1—C4 2.2753 (14)
Mo1—Mo2 2.5732 (4)
Mo1—H9 1.81 (3)
Mo1—H10 1.85 (4)
Mo2—C7 2.2603 (14)
Mo2—C5 2.264 (2)
Mo2—C8 2.2742 (15)
Mo2—C6 2.2789 (14)
Mo2—H9 1.77 (3)
Mo2—H10 1.82 (4)

supplementary crystallographic information

Comment

Significant recent attention has been paid to dinuclear trihydrido complexes, which tend to be soluble in both polar organic solvents and water and thus have potential applications in aqueous organometallic chemistry. A useful synthesis of such complexes is reaction of the corresponding aquo complexes with sodium borohydride in water. Here we report the formation of the title compound through the reaction of the corresponding triacetonitrile complex of molybdenum with sodium borohydride in acetonitrile. The same reaction, but in the presence of tricyclohexylphosphane, affords a tetrahydroborate complex (Tamm et al., 2006). Most dinuclear tri- and polyhydrido complexes contain either two cyclopentadienyl rings or two arene rings (Shima et al., 2005; Süss-Fink et al., 2007), and this is thus the first synthesis of a dinuclear trihydrido complex that contains two cycloheptatrienyl rings. If these rings are formally assigned the charge +1, corresponding to an aromatic π system, then the metal oxidation states are mixed (0,I). Related structural motifs have been observed for halide-bridged dimolybdenum complexes (Tamm et al., 2004).

The X-ray structure analysis of the title compound reveals two (η7-C7H7)Mo units linked by three bridging hydrido ligands. The molecule possesses a crystallographic mirror plane passing through both molybdenum atoms, the atoms C1 and H1 of the cycloheptatrienyl ligands, and the hydride H10. The perpendicular distances of the Mo atoms from the C7 planes are 1.5827 (8) Å for Mo1 and 1.5814 (8) Å for Mo2, with individual Mo—C bond lengths in the range 2.261 (2) – 2.2789 (14) Å. The two C7 planes (r.m.s. deviation 0.005, 0.008 Å) are almost parallel, with an interplanar angle of 1.59 (7) Å. The molecular axis, defined as the sequence (Centroid ring 1)—Mo1—Mo2—(Centroid ring 2), is essentially linear, with Cent—Mo—Mo angles of 179°. The Mo—H—Mo bonds can be described as three-centre, two-electron (3c-2 e) bonds, with Mo—H distances between 1.77 (3) and 1.85 (4) Å.

The Mo—Mo bond length of 2.5732 (4) Å is, as expected, shorter than the Mo—Mo bonds in monohydrido (Mo—H—Mo) complexes, where this distance lies in the range 3.4056 (5)–3.540 (1) Å (Petersen et al., 1981; Darensbourg et al., 1980; Lin et al., 1993). The monohydrido complex [Mo25-C5H5)2(µ-H)(SnPh3)(CO)2(PCy2H)] reported by Alvarez et al. (2006) contains a formal Mo≡Mo bond with a length (2.5730 (6) Å) almost identical to that in the title complex. There is only one report of a dihydrido complex with a quadruply bonded Mo—Mo (2.194 (3) Å) unit (Jones et al., 1980).

Experimental

0.1324 g NaBH4 (0.44 mmol) was suspended in ethanol and cooled to 0 °C. A solution of [(η7-C7H7)Mo(NCMe)3]PF6 (0.1324 g, 3.50 mmol) in acetonitile was added to this suspension. The mixture was stirred at room temperature for several hours. After removal of the solvent and subsequently drying under high vacuum the residue was extracted with hexane/diethyl ether (1:2). Single crystals of the title compound were obtained by cooling of this solution.

Refinement

The bridging H atoms were identified in difference syntheses and freely refined. Other (aromatic) hydrogen atoms were included using a riding model with C—H 0.95 Å and U(H) values fixed at 1.2Uiso(C) of the parent C atom.

Figures

Fig. 1.

Fig. 1.

The formula unit of the title compound in the crystal. Ellipsoids represent 50% probability levels.

Crystal data

[Mo2(C7H7)2H3] Dx = 1.972 Mg m3
Mr = 377.16 Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Pnma Cell parameters from 7837 reflections
a = 17.844 (2) Å θ = 2.3–30.5°
b = 11.3036 (16) Å µ = 1.94 mm1
c = 6.2981 (8) Å T = 133 K
V = 1270.3 (3) Å3 Tablet, green
Z = 4 0.38 × 0.20 × 0.04 mm
F(000) = 740

Data collection

Bruker SMART 1000 CCD diffractometer 2023 independent reflections
Radiation source: fine-focus sealed tube 1871 reflections with I > 2σ(I)
graphite Rint = 0.026
Detector resolution: 8.192 pixels mm-1 θmax = 30.5°, θmin = 2.3°
ω and φ scans h = −25→25
Absorption correction: multi-scan (SADABS; Bruker, 1998) k = −16→15
Tmin = 0.526, Tmax = 0.926 l = −8→8
25354 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.015 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.041 H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0195P)2 + 1.0664P] where P = (Fo2 + 2Fc2)/3
2023 reflections (Δ/σ)max = 0.001
86 parameters Δρmax = 0.48 e Å3
0 restraints Δρmin = −0.41 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Mo1 0.138195 (8) 0.2500 0.59745 (3) 0.01163 (5)
Mo2 0.007079 (8) 0.2500 0.42733 (3) 0.01206 (5)
C1 0.17862 (12) 0.2500 0.9377 (4) 0.0280 (5)
H1 0.1548 0.2500 1.0725 0.034*
C2 0.19390 (8) 0.13719 (15) 0.8514 (3) 0.0261 (3)
H2 0.1804 0.0715 0.9374 0.031*
C3 0.22664 (8) 0.10988 (14) 0.6537 (3) 0.0247 (3)
H3 0.2309 0.0280 0.6222 0.030*
C4 0.25402 (8) 0.18763 (15) 0.4960 (3) 0.0231 (3)
H4 0.2752 0.1511 0.3741 0.028*
C5 −0.11081 (11) 0.2500 0.5604 (4) 0.0225 (4)
H5 −0.1318 0.2500 0.6991 0.027*
C6 −0.09750 (8) 0.13700 (14) 0.4723 (3) 0.0234 (3)
H6 −0.1121 0.0714 0.5569 0.028*
C7 −0.06509 (8) 0.10969 (13) 0.2738 (3) 0.0233 (3)
H7 −0.0589 0.0278 0.2449 0.028*
C8 −0.04060 (8) 0.18731 (14) 0.1119 (2) 0.0225 (3)
H8 −0.0217 0.1507 −0.0129 0.027*
H9 0.0858 (14) 0.155 (2) 0.421 (4) 0.058 (8)*
H10 0.041 (2) 0.2500 0.700 (6) 0.061 (11)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Mo1 0.00941 (7) 0.01301 (8) 0.01246 (8) 0.000 −0.00047 (5) 0.000
Mo2 0.00958 (7) 0.01379 (8) 0.01280 (8) 0.000 −0.00056 (5) 0.000
C1 0.0166 (9) 0.0542 (16) 0.0133 (10) 0.000 −0.0030 (7) 0.000
C2 0.0178 (6) 0.0309 (8) 0.0296 (8) −0.0025 (6) −0.0072 (6) 0.0149 (7)
C3 0.0157 (6) 0.0181 (6) 0.0403 (9) 0.0047 (5) −0.0071 (6) −0.0001 (6)
C4 0.0119 (6) 0.0330 (8) 0.0243 (8) 0.0045 (5) 0.0004 (5) −0.0074 (6)
C5 0.0123 (8) 0.0354 (12) 0.0199 (10) 0.000 0.0017 (7) 0.000
C6 0.0141 (6) 0.0272 (7) 0.0289 (8) −0.0070 (5) −0.0019 (5) 0.0059 (6)
C7 0.0184 (6) 0.0204 (6) 0.0313 (8) −0.0036 (5) −0.0070 (6) −0.0044 (6)
C8 0.0188 (6) 0.0307 (8) 0.0181 (7) 0.0004 (6) −0.0045 (5) −0.0067 (6)

Geometric parameters (Å, °)

Mo1—C1 2.261 (2) C1—C2 1.413 (2)
Mo1—C3i 2.2638 (14) C1—C2i 1.413 (2)
Mo1—C3 2.2638 (14) C1—H1 0.9500
Mo1—C2i 2.2740 (15) C2—C3 1.409 (2)
Mo1—C2 2.2740 (15) C2—H2 0.9500
Mo1—C4i 2.2753 (14) C3—C4 1.414 (2)
Mo1—C4 2.2753 (14) C3—H3 0.9500
Mo1—Mo2 2.5732 (4) C4—C4i 1.410 (3)
Mo1—H9 1.81 (3) C4—H4 0.9500
Mo1—H10 1.85 (4) C5—C6 1.4128 (19)
Mo2—C7 2.2603 (14) C5—C6i 1.4128 (19)
Mo2—C7i 2.2603 (14) C5—H5 0.9500
Mo2—C5 2.264 (2) C6—C7 1.412 (2)
Mo2—C8 2.2742 (15) C6—H6 0.9500
Mo2—C8i 2.2742 (15) C7—C8 1.414 (2)
Mo2—C6 2.2789 (14) C7—H7 0.9500
Mo2—C6i 2.2789 (14) C8—C8i 1.417 (3)
Mo2—H9 1.77 (3) C8—H8 0.9500
Mo2—H10 1.82 (4)
C1—Mo1—C3i 68.24 (6) C8i—Mo2—Mo1 134.73 (4)
C1—Mo1—C3 68.24 (6) C6—Mo2—Mo1 133.85 (4)
C3i—Mo1—C3 88.79 (8) C6i—Mo2—Mo1 133.85 (4)
C1—Mo1—C2i 36.30 (5) C7—Mo2—H9 90.9 (8)
C3i—Mo1—C2i 36.19 (6) C7i—Mo2—H9 150.4 (8)
C3—Mo1—C2i 88.71 (6) C5—Mo2—H9 138.2 (9)
C1—Mo1—C2 36.30 (5) C8—Mo2—H9 95.0 (8)
C3i—Mo1—C2 88.71 (6) C8i—Mo2—H9 117.8 (8)
C3—Mo1—C2 36.19 (6) C6—Mo2—H9 108.1 (9)
C2i—Mo1—C2 68.21 (9) C6i—Mo2—H9 173.4 (8)
C1—Mo1—C4i 88.65 (7) Mo1—Mo2—H9 44.6 (8)
C3i—Mo1—C4i 36.29 (6) C7—Mo2—H10 126.4 (6)
C3—Mo1—C4i 68.13 (6) C7i—Mo2—H10 126.4 (6)
C2i—Mo1—C4i 68.09 (6) C5—Mo2—H10 87.8 (12)
C2—Mo1—C4i 88.53 (6) C8—Mo2—H10 161.5 (2)
C1—Mo1—C4 88.65 (7) C8i—Mo2—H10 161.5 (2)
C3i—Mo1—C4 68.13 (6) C6—Mo2—H10 99.0 (10)
C3—Mo1—C4 36.29 (6) C6i—Mo2—H10 99.0 (10)
C2i—Mo1—C4 88.53 (6) Mo1—Mo2—H10 45.9 (12)
C2—Mo1—C4 68.09 (6) H9—Mo2—H10 75.9 (12)
C4i—Mo1—C4 36.10 (8) C2—C1—C2i 129.0 (2)
C1—Mo1—Mo2 133.21 (6) C2—C1—Mo1 72.36 (11)
C3i—Mo1—Mo2 134.35 (4) C2i—C1—Mo1 72.36 (11)
C3—Mo1—Mo2 134.35 (4) C2—C1—H1 115.5
C2i—Mo1—Mo2 133.65 (4) C2i—C1—H1 115.5
C2—Mo1—Mo2 133.65 (4) Mo1—C1—H1 134.8
C4i—Mo1—Mo2 135.14 (4) C3—C2—C1 128.13 (16)
C4—Mo1—Mo2 135.14 (4) C3—C2—Mo1 71.51 (9)
C1—Mo1—H9 138.4 (8) C1—C2—Mo1 71.34 (11)
C3i—Mo1—H9 150.9 (8) C3—C2—H2 115.9
C3—Mo1—H9 92.2 (8) C1—C2—H2 115.9
C2i—Mo1—H9 172.9 (8) Mo1—C2—H2 136.7
C2—Mo1—H9 108.9 (8) C2—C3—C4 128.89 (14)
C4i—Mo1—H9 118.8 (8) C2—C3—Mo1 72.30 (8)
C4—Mo1—H9 96.4 (8) C4—C3—Mo1 72.30 (8)
Mo2—Mo1—H9 43.5 (8) C2—C3—H3 115.6
C1—Mo1—H10 88.2 (12) C4—C3—H3 115.6
C3i—Mo1—H10 126.8 (6) Mo1—C3—H3 134.8
C3—Mo1—H10 126.8 (6) C4i—C4—C3 128.44 (9)
C2i—Mo1—H10 99.5 (10) C4i—C4—Mo1 71.95 (4)
C2—Mo1—H10 99.5 (10) C3—C4—Mo1 71.42 (8)
C4i—Mo1—H10 161.7 (2) C4i—C4—H4 115.8
C4—Mo1—H10 161.7 (2) C3—C4—H4 115.8
Mo2—Mo1—H10 45.0 (12) Mo1—C4—H4 136.3
H9—Mo1—H10 74.3 (12) C6—C5—C6i 129.4 (2)
C7—Mo2—C7i 89.12 (8) C6—C5—Mo2 72.45 (10)
C7—Mo2—C5 68.23 (5) C6i—C5—Mo2 72.45 (10)
C7i—Mo2—C5 68.23 (5) C6—C5—H5 115.3
C7—Mo2—C8 36.34 (6) C6i—C5—H5 115.3
C7i—Mo2—C8 68.40 (6) Mo2—C5—H5 134.9
C5—Mo2—C8 88.61 (7) C7—C6—C5 127.92 (15)
C7—Mo2—C8i 68.40 (6) C7—C6—Mo2 71.17 (8)
C7i—Mo2—C8i 36.34 (6) C5—C6—Mo2 71.32 (10)
C5—Mo2—C8i 88.61 (7) C7—C6—H6 116.0
C8—Mo2—C8i 36.31 (8) C5—C6—H6 116.0
C7—Mo2—C6 36.23 (6) Mo2—C6—H6 137.1
C7i—Mo2—C6 88.85 (6) C6—C7—C8 129.00 (14)
C5—Mo2—C6 36.23 (5) C6—C7—Mo2 72.60 (8)
C8—Mo2—C6 68.13 (6) C8—C7—Mo2 72.36 (8)
C8i—Mo2—C6 88.67 (6) C6—C7—H7 115.5
C7—Mo2—C6i 88.85 (6) C8—C7—H7 115.5
C7i—Mo2—C6i 36.23 (6) Mo2—C7—H7 134.4
C5—Mo2—C6i 36.23 (5) C7—C8—C8i 128.35 (9)
C8—Mo2—C6i 88.67 (6) C7—C8—Mo2 71.30 (8)
C8i—Mo2—C6i 68.13 (6) C8i—C8—Mo2 71.84 (4)
C6—Mo2—C6i 68.18 (8) C7—C8—H8 115.8
C7—Mo2—Mo1 134.12 (4) C8i—C8—H8 115.8
C7i—Mo2—Mo1 134.12 (4) Mo2—C8—H8 136.5
C5—Mo2—Mo1 133.67 (6) Mo1—H9—Mo2 92 (1)
C8—Mo2—Mo1 134.73 (4) Mo1—H10—Mo2 89 (2)
C1—Mo1—Mo2—C7 −102.21 (6) C4i—Mo1—C3—C2 120.12 (10)
C3i—Mo1—Mo2—C7 155.85 (9) C4—Mo1—C3—C2 142.53 (14)
C3—Mo1—Mo2—C7 −0.26 (9) Mo2—Mo1—C3—C2 −107.37 (9)
C2i—Mo1—Mo2—C7 −153.00 (9) C1—Mo1—C3—C4 −120.06 (10)
C2—Mo1—Mo2—C7 −51.41 (9) C3i—Mo1—C3—C4 −53.07 (11)
C4i—Mo1—Mo2—C7 103.85 (9) C2i—Mo1—C3—C4 −89.27 (10)
C4—Mo1—Mo2—C7 51.74 (9) C2—Mo1—C3—C4 −142.53 (14)
C1—Mo1—Mo2—C7i 102.21 (6) C4i—Mo1—C3—C4 −22.42 (7)
C3i—Mo1—Mo2—C7i 0.26 (9) Mo2—Mo1—C3—C4 110.10 (9)
C3—Mo1—Mo2—C7i −155.85 (9) C2—C3—C4—C4i −1.3 (2)
C2i—Mo1—Mo2—C7i 51.41 (9) Mo1—C3—C4—C4i 46.82 (7)
C2—Mo1—Mo2—C7i 153.00 (9) C2—C3—C4—Mo1 −48.12 (14)
C4i—Mo1—Mo2—C7i −51.74 (9) C1—Mo1—C4—C4i −89.56 (2)
C4—Mo1—Mo2—C7i −103.85 (9) C3i—Mo1—C4—C4i −22.52 (6)
C1—Mo1—Mo2—C5 0.0 C3—Mo1—C4—C4i −143.08 (8)
C3i—Mo1—Mo2—C5 −101.94 (6) C2i—Mo1—C4—C4i −53.25 (5)
C3—Mo1—Mo2—C5 101.94 (6) C2—Mo1—C4—C4i −120.30 (5)
C2i—Mo1—Mo2—C5 −50.79 (7) Mo2—Mo1—C4—C4i 109.12 (5)
C2—Mo1—Mo2—C5 50.79 (7) C1—Mo1—C4—C3 53.52 (9)
C4i—Mo1—Mo2—C5 −153.94 (6) C3i—Mo1—C4—C3 120.56 (13)
C4—Mo1—Mo2—C5 153.94 (6) C2i—Mo1—C4—C3 89.83 (10)
C1—Mo1—Mo2—C8 −153.98 (6) C2—Mo1—C4—C3 22.78 (9)
C3i—Mo1—Mo2—C8 104.07 (9) C4i—Mo1—C4—C3 143.08 (8)
C3—Mo1—Mo2—C8 −52.04 (9) Mo2—Mo1—C4—C3 −107.80 (9)
C2i—Mo1—Mo2—C8 155.22 (9) C7—Mo2—C5—C6 22.41 (10)
C2—Mo1—Mo2—C8 −103.19 (9) C7i—Mo2—C5—C6 120.56 (12)
C4i—Mo1—Mo2—C8 52.08 (9) C8—Mo2—C5—C6 53.32 (11)
C4—Mo1—Mo2—C8 −0.04 (8) C8i—Mo2—C5—C6 89.65 (11)
C1—Mo1—Mo2—C8i 153.98 (6) C6i—Mo2—C5—C6 143.0 (2)
C3i—Mo1—Mo2—C8i 52.04 (9) Mo1—Mo2—C5—C6 −108.51 (10)
C3—Mo1—Mo2—C8i −104.07 (9) C7—Mo2—C5—C6i −120.56 (12)
C2i—Mo1—Mo2—C8i 103.19 (9) C7i—Mo2—C5—C6i −22.41 (10)
C2—Mo1—Mo2—C8i −155.22 (9) C8—Mo2—C5—C6i −89.65 (11)
C4i—Mo1—Mo2—C8i 0.04 (8) C8i—Mo2—C5—C6i −53.32 (11)
C4—Mo1—Mo2—C8i −52.08 (9) C6—Mo2—C5—C6i −143.0 (2)
C1—Mo1—Mo2—C6 −51.00 (6) Mo1—Mo2—C5—C6i 108.51 (10)
C3i—Mo1—Mo2—C6 −152.94 (9) C6i—C5—C6—C7 2.0 (4)
C3—Mo1—Mo2—C6 50.94 (9) Mo2—C5—C6—C7 −45.95 (16)
C2i—Mo1—Mo2—C6 −101.80 (9) C6i—C5—C6—Mo2 48.0 (2)
C2—Mo1—Mo2—C6 −0.21 (9) C7i—Mo2—C6—C7 90.09 (11)
C4i—Mo1—Mo2—C6 155.06 (9) C5—Mo2—C6—C7 143.20 (15)
C4—Mo1—Mo2—C6 102.94 (9) C8—Mo2—C6—C7 22.96 (9)
C1—Mo1—Mo2—C6i 51.00 (6) C8i—Mo2—C6—C7 53.74 (10)
C3i—Mo1—Mo2—C6i −50.94 (9) C6i—Mo2—C6—C7 120.65 (8)
C3—Mo1—Mo2—C6i 152.94 (9) Mo1—Mo2—C6—C7 −108.80 (9)
C2i—Mo1—Mo2—C6i 0.21 (9) C7—Mo2—C6—C5 −143.20 (15)
C2—Mo1—Mo2—C6i 101.80 (9) C7i—Mo2—C6—C5 −53.11 (11)
C4i—Mo1—Mo2—C6i −102.94 (9) C8—Mo2—C6—C5 −120.24 (12)
C4—Mo1—Mo2—C6i −155.06 (9) C8i—Mo2—C6—C5 −89.46 (11)
C3i—Mo1—C1—C2 −120.18 (12) C6i—Mo2—C6—C5 −22.55 (12)
C3—Mo1—C1—C2 −22.42 (10) Mo1—Mo2—C6—C5 108.00 (11)
C2i—Mo1—C1—C2 −142.6 (2) C5—C6—C7—C8 −2.5 (3)
C4i—Mo1—C1—C2 −89.35 (11) Mo2—C6—C7—C8 −48.52 (14)
C4—Mo1—C1—C2 −53.24 (11) C5—C6—C7—Mo2 46.00 (16)
Mo2—Mo1—C1—C2 108.70 (10) C7i—Mo2—C7—C6 −89.25 (10)
C3i—Mo1—C1—C2i 22.42 (10) C5—Mo2—C7—C6 −22.41 (9)
C3—Mo1—C1—C2i 120.18 (12) C8—Mo2—C7—C6 −142.34 (13)
C2—Mo1—C1—C2i 142.6 (2) C8i—Mo2—C7—C6 −119.89 (10)
C4i—Mo1—C1—C2i 53.24 (11) C6i—Mo2—C7—C6 −53.01 (10)
C4—Mo1—C1—C2i 89.35 (11) Mo1—Mo2—C7—C6 108.01 (9)
Mo2—Mo1—C1—C2i −108.70 (10) C7i—Mo2—C7—C8 53.09 (10)
C2i—C1—C2—C3 −1.8 (4) C5—Mo2—C7—C8 119.93 (10)
Mo1—C1—C2—C3 46.32 (16) C8i—Mo2—C7—C8 22.45 (7)
C2i—C1—C2—Mo1 −48.2 (2) C6—Mo2—C7—C8 142.34 (13)
C1—Mo1—C2—C3 −143.14 (15) C6i—Mo2—C7—C8 89.33 (10)
C3i—Mo1—C2—C3 −89.72 (11) Mo1—Mo2—C7—C8 −109.65 (9)
C2i—Mo1—C2—C3 −120.36 (8) C6—C7—C8—C8i 2.0 (2)
C4i—Mo1—C2—C3 −53.42 (10) Mo2—C7—C8—C8i −46.58 (7)
C4—Mo1—C2—C3 −22.83 (9) C6—C7—C8—Mo2 48.61 (14)
Mo2—Mo1—C2—C3 109.41 (8) C7i—Mo2—C8—C7 −120.70 (12)
C3i—Mo1—C2—C1 53.42 (11) C5—Mo2—C8—C7 −53.62 (8)
C3—Mo1—C2—C1 143.14 (15) C8i—Mo2—C8—C7 −143.16 (8)
C2i—Mo1—C2—C1 22.78 (12) C6—Mo2—C8—C7 −22.90 (9)
C4i—Mo1—C2—C1 89.72 (11) C6i—Mo2—C8—C7 −89.86 (10)
C4—Mo1—C2—C1 120.31 (12) Mo1—Mo2—C8—C7 107.88 (8)
Mo2—Mo1—C2—C1 −107.45 (11) C7—Mo2—C8—C8i 143.16 (8)
C1—C2—C3—C4 1.9 (3) C7i—Mo2—C8—C8i 22.47 (5)
Mo1—C2—C3—C4 48.12 (14) C5—Mo2—C8—C8i 89.54 (2)
C1—C2—C3—Mo1 −46.26 (17) C6—Mo2—C8—C8i 120.26 (5)
C1—Mo1—C3—C2 22.48 (9) C6i—Mo2—C8—C8i 53.30 (5)
C3i—Mo1—C3—C2 89.47 (10) Mo1—Mo2—C8—C8i −108.96 (5)
C2i—Mo1—C3—C2 53.27 (10)

Symmetry codes: (i) x, −y+1/2, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT2832).

References

  1. Alvarez, M. A., Garcia, M. E., Ramos, A. & Ruiz, M. A. (2006). Organometallics, 26, 5374–5380.
  2. Bruker (1998). SMART, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Darensbourg, M. Y., Atwood, J. L., Hunter, W. E. & Burch, R. R. Jr (1980). J. Am. Chem. Soc.101, 3290–3292.
  4. Jones, R. A., Chiu, K. W., Wilkinson, G., Galas, A. M. R. & Hursthouse, M. B. (1980). J. Chem. Soc. Chem. Commun. pp. 408–409.
  5. Lin, J. T., Yeh, A. C., Tasai, T. Y. R. & Wen, Y. S. (1993). J. Organomet. Chem.453, 221–229.
  6. Petersen, J. L., Masimo, A. & Stewart, R. P. Jr (1981). J. Organomet. Chem.208, 55–71.
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Shima, T. & Suzuki, H. (2005). Organometallics, 24, 3939–3945.
  9. Siemens (1994). XP Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
  10. Süss-Fink, G. & Therrien, B. (2007). Organometallics, 26, 766–774.
  11. Tamm, M., Bannenberg, T., Frölich, R., Grimme, S. & Gerenkamp, M. (2004). Dalton Trans. pp. 482–491. [DOI] [PubMed]
  12. Tamm, M., Dressel, B., Bannenberg, T., Grunenberg, J. & Herdtweck, E. (2006). Z. Naturforsch. Teil B, 61, 896–903.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808042244/bt2832sup1.cif

e-65-00m96-sup1.cif (24KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808042244/bt2832Isup2.hkl

e-65-00m96-Isup2.hkl (99.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES