Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Dec 20;65(Pt 1):m97–m98. doi: 10.1107/S1600536808042256

Bromido[1-(η6-4-tert-butyl­benz­yl)-3-(2,4,6-trimethyl­benz­yl)benzimidazol-2-yl­idene]chloridoruthenium(II)

Hakan Arslan a,b,*, Don VanDerveer c, İsmail Özdemir d, Serpil Demir d, Bekir Çetinkaya e
PMCID: PMC2967929  PMID: 21581560

Abstract

A new ruthenium complex, [RuBrCl(C28H32N2)], has been synthesized and characterized by elemental analysis, 1H NMR, 13C NMR, IR-spectroscopy and a single-crystal X-ray diffraction study. The Ru atom in this complex is best described as having a considerably distorted octa­hedral coordination environment with the arene occupying three coordination sites. Two further coordination sites are occupied by chloride and bromide ligands, while the sixth site is occupied by the carbene. The carbene portion of the ligand is a benzimidazole ring. This ring is connected to the C6H4C(CH3)3 arene by a CH2 bridge. This leads to a system with very little apparent strain. The two halogen atoms are disordered between Br and Cl. Two partial Cl atoms share the same sites as two partial Br atoms so that the title compound effectively has one Cl and one Br atom. C—H⋯X (X = Cl, Br) hydrogen bonds help to stabilize the crystal structure.

Related literature

For synthesis, see: Yaşar et al. (2008); Çetinkaya et al. (2003). For general background, see: Herrmann (2002); Arduengo & Krafczyc (1998); Arduengo et al. (1991). For related compounds, see: Begley et al. (1991); Arslan et al. (2004b , 2005a ,b , 2007b ,c ). For related literature, see: Arslan et al. (2004a , 2007a ); Herrmann et al. (1995); Navarro et al. (2006); Özdemir et al. (2001); Çetinkaya et al. (2001, 2002).graphic file with name e-65-00m97-scheme1.jpg

Experimental

Crystal data

  • [RuBrCl(C28H32N2)]

  • M r = 611.69

  • Monoclinic, Inline graphic

  • a = 7.6336 (15) Å

  • b = 27.725 (6) Å

  • c = 12.051 (2) Å

  • β = 98.80 (3)°

  • V = 2520.5 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.29 mm−1

  • T = 153 (2) K

  • 0.26 × 0.12 × 0.02 mm

Data collection

  • Rigaku Mercury CCD diffractometer

  • Absorption correction: multi-scan (REQAB; Jacobson, 1998) T min = 0.581, T max = 0.955

  • 17799 measured reflections

  • 4449 independent reflections

  • 3288 reflections with I > 2σ(I)

  • R int = 0.089

Refinement

  • R[F 2 > 2σ(F 2)] = 0.089

  • wR(F 2) = 0.255

  • S = 1.04

  • 4449 reflections

  • 306 parameters

  • H-atom parameters constrained

  • Δρmax = 2.45 e Å−3

  • Δρmin = −1.38 e Å−3

Data collection: CrystalClear (Rigaku/MSC, 2006); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808042256/at2686sup1.cif

e-65-00m97-sup1.cif (31.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808042256/at2686Isup2.hkl

e-65-00m97-Isup2.hkl (218KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C14—H14⋯Cl2i 0.96 2.65 3.406 (11) 135
C16—H16C⋯Br1 0.96 2.92 3.563 (11) 125
C19—H19A⋯Br1 0.96 2.92 3.323 (11) 106

Symmetry code: (i) Inline graphic.

Acknowledgments

We thank the Scientific and Technological Research Council of Turkey TÜBİTAK-CNRS [TBAG-U/181 (106 T716)] and İnönü University Research Fund (BAP. 2008/03 Güdümlü) for financial support.

supplementary crystallographic information

Comment

N-Heterocyclic carbenes have received great attention since the first synthesis of a carbene compound,1,3-di-l-adamantylimidazol-2-ylidene, by Arduengo et al., (1991). N-heterocyclic carbenes generally derived from imidazolium, tetrahydropyrimidin-1-ium and benzimidazolium salts, have attracted wide spread attention as ligands for main group elements and transition metals. The N-heterocyclic carbene metal complexes are remarkably stable toward heat, air, and moisture, and many organic reactions using these complexes as catalysts have been investigated. These include Suzuki-Miyura, Sonogashira, Stille and Heck reactions (Herrmann et al., 1995; Herrmann, 2002; Navarro et al., 2006; Arduengo & Krafczyc,1998).

Previous work from our research groups in this area has focused on the elaboration of olefins as electron-rich heterocyclic carbene precursors to allow the formation of chelating carbenes. We have also looked at the rapidly developing chemistry of η6-arene ruthenium(II) complexes containing substituted imidazolidin-2-ylidenes (Özdemir et al., 2001; Çetinkaya et al., 2001, 2002, 2003), and on synthesis, characterization, crystal structure, and using palladium, platinum and ruthenium N-heterocyclic carbene complexes as catalysts (Yaşar et al., 2008; Arslan et al., 2007a, 2007b, 2007c, 2004a, 2004b, 2005a, 2005b).

In the present study, we have synthesized and characterized a new ruthenium complex, (1-(4-tert-butylbenzyl)-3-(2,4,6-trimethylbenzyl)-benzimidazol-2-ylidene)ruthenium(II) bromide chloride, (I). The molecular structure of the title compound, (I), is depicted in Fig. 1.

The carbene portion of the ligand is a benzimidazole ring. This ring is connected to the C6H4C(CH3)3 arene by a CH2 bridge. This leads to a system with very little apparent strain. The ruthenium atom in the title compound is best described as having an octahedral coordination environment, with the arene occupying three coordination sites. Two further coordination sites are occupied by Cl and Br ligands, while the sixth site is occupied by the carbene carbon of benzimidazole ring. The ruthenium atom is situated 1.658 (5) Å from the ring centroid of the arene atom. While there are substantial differences in the C—C and C—Ru distances for the arene ring, there is no evidence of the alternating C—C bonds observed in some ruthenium-arene complexes (Begley et al., 1991). The arene ring is essentially planar, the mean deviation from the plane being 0.013 (12) Å. In addition, the trimethylbenzyl and benzimidazole rings are almost planar with the maximum deviations of 0.009 (12) Å for atom C25 and, 0.003 (11) Å for atom C2. The benzimidazole moiety is planar and it forms dihedral angles of 87.16 (6)° and 85.31 (7)°, respectively, with the mean planes through the arene and trimethylbenzyl rings.

The two halogen atoms are disordered between Br and Cl. Two chlorine atoms share the same site as two bromine atoms so that the title compound effectively has one Cl and one Br atom. The occupancies of the Cl1 and Cl2 atoms are 0.399 (11) and 0.630 (11), respectively, and those of the Br1 and Br2 atoms are 0.601 (11) and 0.370 (11), respectively.

The structure of the title compound is assembled by intermolecular C—H···Cl hydrogen bonds, to form a two-dimensional framework (Fig. 2, 3 and Table 1) (Macrae et al., 2006). The intermolecular contacts, C—H···Br, are also listed in Table 1.

Experimental

All reactions for the preparation of (I) and (II) were carried out under Ar in flame-dried glass-ware using standard Schlenk-type flasks. The solvents used were purified by distillation over the drying agents indicated and were transferred under Ar: CH2Cl2 (P4O10), hexane, toluene (Na). RuClBr[η1-CN{CH26-C6H4CMe3-4)}C6H4N(CH2C6H2Me3-2,4,6)]: A suspension of 1-(4-terbutylbenzyl)-3-(2,4,6-trimethylbenzyl)benzimidazolium bromide (1.00 g, 2.10 mmol), Cs2CO3 (0.7 g, 2.14 mmol), [RuCl2(p-cymene)]2 (0.5 g, 0.82 mmol) and molecular sieves was heated under reflux in degassed dry toluene (20 ml) for 12 h. The reaction mixture was then filtered while hot, and the volume was reduced to about 10 ml before addition of n-hexane (10 ml). The precipitate formed was crystallized from CH2Cl2/hexane (5:10 ml) to give the crystal product (Fig. 3). Yield 1.00 g (82%). M.p.: 339–340 oC. FT—IR (KBr pellet, cm-1): νCN 1432 cm-1. Anal. Found: C, 54.91; H, 5.29; N: 4.54. Calc. for C28H32N2RuClBr: C, 54.86; H, 5.26; N, 4.57. 1H NMR (δ, 399.9 MHz, CDCl3): 1.25, 1.31 and 1.37 [s, 9H, CH2C6H4C(CH3)3-p]; 2.17 [m, 9H, CH2C6H2(CH3)3-2,4,6]; 5.07 and 5.67 [m, 4H, CH2C6H2(CH3)3-2,4,6 and CH2C6H4C(CH3)3-p]; 6.79–7.60 [m, 10H, NC6H4 N, CH2C6H2(CH3)3-2,4,6 and CH2C6H4C(CH3)3-p]. 13C {H} NMR (δ, 100.5 MHz, CDCl3): 20.4 and 21.5 [CH2C6H2(CH3)3-2,4,6]; 31.3 [CH2C6H4C(CH3)3-p]; 34.7 [CH2C6H4C(CH3)3-p]; 45.0 [CH2C6H2(CH3)3-2,4,6]; 53.2 [CH2C6H4C(CH3)3-p]; 89.1, 90.1, 91.1, 93.0, 93.7, 98.9, 100.9, 109.7, 113.0, 113.8, 123.3, 125.3, 127.9, 129.0, 131.5, 133.4, 137.9 and 150.1 [CH2C6H2(CH3)3-2,4,6;NC6H4N and CH2C6H4C(CH3)3-p]; 184.1 [Ccarbene].

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, showing the atom-numbering scheme and displacement ellipsoids drawn at the 50% probability level.

Fig. 2.

Fig. 2.

A packing diagram for (I).

Fig. 3.

Fig. 3.

A view of the packing diagram of (I). Hydrogen bonds are shown as dashed lines.

Fig. 4.

Fig. 4.

Preparation of the title compound.

Crystal data

[RuBrCl(C28H32N2)] F(000) = 1237.9
Mr = 611.69 Dx = 1.612 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 6078 reflections
a = 7.6336 (15) Å θ = 2.8–26.3°
b = 27.725 (6) Å µ = 2.29 mm1
c = 12.051 (2) Å T = 153 K
β = 98.80 (3)° Plate, red
V = 2520.5 (9) Å3 0.26 × 0.12 × 0.02 mm
Z = 4

Data collection

Rigaku Mercury CCD diffractometer 4449 independent reflections
Radiation source: Sealed Tube 3288 reflections with I > 2σ(I)
Graphite Monochromator Rint = 0.089
Detector resolution: 14.6306 pixels mm-1 θmax = 25.0°, θmin = 2.3°
ω scans h = −9→9
Absorption correction: multi-scan (REQAB; Jacobson, 1998) k = −30→33
Tmin = 0.581, Tmax = 0.955 l = −14→14
17799 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.089 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.255 H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.1351P)2 + 37.3742P] where P = (Fo2 + 2Fc2)/3
4449 reflections (Δ/σ)max < 0.001
306 parameters Δρmax = 2.45 e Å3
0 restraints Δρmin = −1.38 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Ru1 0.60457 (10) 0.20821 (3) −0.00508 (7) 0.0216 (3)
Cl1 0.72119 (18) 0.23046 (5) 0.19599 (11) 0.0291 (6) 0.399 (11)
Br1 0.72119 (18) 0.23046 (5) 0.19599 (11) 0.0291 (6) 0.601 (11)
Cl2 0.2998 (2) 0.19995 (6) 0.03585 (16) 0.0322 (7) 0.630 (11)
Br2 0.2998 (2) 0.19995 (6) 0.03585 (16) 0.0322 (7) 0.370 (11)
N1 0.6449 (10) 0.2957 (3) −0.1343 (8) 0.0231 (18)
N2 0.5256 (11) 0.3219 (3) 0.0063 (7) 0.0247 (18)
C1 0.5792 (12) 0.2804 (4) −0.0395 (9) 0.024 (2)
C2 0.6346 (13) 0.3450 (4) −0.1471 (9) 0.027 (2)
C3 0.6940 (14) 0.3753 (4) −0.2264 (10) 0.030 (2)
H3 0.7496 0.3630 −0.2868 0.036*
C4 0.6679 (14) 0.4238 (4) −0.2125 (9) 0.029 (2)
H4 0.7055 0.4459 −0.2653 0.035*
C5 0.5879 (14) 0.4421 (4) −0.1236 (10) 0.029 (2)
H5 0.5708 0.4763 −0.1171 0.035*
C6 0.5345 (15) 0.4115 (4) −0.0466 (10) 0.032 (2)
H6 0.4813 0.4241 0.0145 0.038*
C7 0.5573 (13) 0.3620 (3) −0.0571 (9) 0.024 (2)
C8 0.7150 (15) 0.2616 (4) −0.2085 (9) 0.029 (2)
H8A 0.8336 0.2705 −0.2176 0.035*
H8B 0.6427 0.2616 −0.2810 0.035*
C9 0.7140 (14) 0.2114 (4) −0.1541 (9) 0.026 (2)
C10 0.5597 (15) 0.1828 (4) −0.1780 (10) 0.030 (2)
H10 0.4690 0.1900 −0.2401 0.036*
C11 0.5439 (14) 0.1426 (4) −0.1061 (9) 0.029 (2)
H11 0.4374 0.1237 −0.1194 0.034*
C12 0.6761 (13) 0.1292 (4) −0.0165 (9) 0.029 (2)
C13 0.8302 (14) 0.1597 (4) 0.0012 (10) 0.030 (2)
H13 0.9203 0.1524 0.0637 0.036*
C14 0.8585 (14) 0.1996 (3) −0.0666 (9) 0.025 (2)
H14 0.9670 0.2177 −0.0552 0.030*
C15 0.6573 (14) 0.0866 (4) 0.0614 (9) 0.027 (2)
C16 0.6828 (15) 0.1024 (4) 0.1864 (10) 0.034 (2)
H16A 0.8046 0.1110 0.2103 0.052*
H16B 0.6511 0.0763 0.2317 0.052*
H16C 0.6086 0.1297 0.1945 0.052*
C17 0.4716 (15) 0.0640 (4) 0.0349 (10) 0.036 (3)
H17A 0.3857 0.0858 0.0572 0.054*
H17B 0.4693 0.0342 0.0752 0.054*
H17C 0.4440 0.0579 −0.0442 0.054*
C18 0.7974 (16) 0.0484 (4) 0.0473 (11) 0.038 (3)
H18A 0.7866 0.0392 −0.0302 0.057*
H18B 0.7800 0.0206 0.0919 0.057*
H18C 0.9135 0.0614 0.0714 0.057*
C19 0.4525 (14) 0.3223 (4) 0.1144 (9) 0.028 (2)
H19A 0.5491 0.3249 0.1753 0.034*
H19B 0.3941 0.2922 0.1224 0.034*
C20 0.3246 (14) 0.3624 (4) 0.1237 (9) 0.025 (2)
C21 0.1591 (14) 0.3634 (4) 0.0541 (9) 0.030 (2)
C22 0.0405 (13) 0.4017 (4) 0.0669 (9) 0.027 (2)
H22 −0.0736 0.4022 0.0205 0.032*
C23 0.0847 (15) 0.4383 (4) 0.1445 (9) 0.032 (2)
C24 0.2486 (15) 0.4370 (4) 0.2112 (10) 0.035 (3)
H24 0.2804 0.4627 0.2641 0.042*
C25 0.3703 (15) 0.3996 (4) 0.2046 (9) 0.032 (2)
C26 0.1006 (16) 0.3244 (4) −0.0281 (11) 0.039 (3)
H26A 0.1386 0.3318 −0.0985 0.058*
H26B −0.0263 0.3220 −0.0387 0.058*
H26C 0.1517 0.2943 −0.0001 0.058*
C27 −0.0427 (18) 0.4793 (5) 0.1538 (12) 0.046 (3)
H27A −0.0544 0.4841 0.2312 0.068*
H27B −0.1563 0.4716 0.1116 0.068*
H27C 0.0019 0.5083 0.1244 0.068*
C28 0.5490 (16) 0.4006 (4) 0.2781 (10) 0.037 (3)
H28A 0.5585 0.4292 0.3235 0.055*
H28B 0.6408 0.4006 0.2318 0.055*
H28C 0.5613 0.3727 0.3258 0.055*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Ru1 0.0204 (5) 0.0223 (5) 0.0219 (5) −0.0002 (3) 0.0021 (3) −0.0011 (3)
Cl1 0.0329 (8) 0.0257 (8) 0.0261 (8) 0.0028 (5) −0.0035 (5) −0.0018 (5)
Br1 0.0329 (8) 0.0257 (8) 0.0261 (8) 0.0028 (5) −0.0035 (5) −0.0018 (5)
Cl2 0.0263 (10) 0.0370 (11) 0.0354 (11) −0.0006 (7) 0.0118 (7) 0.0017 (7)
Br2 0.0263 (10) 0.0370 (11) 0.0354 (11) −0.0006 (7) 0.0118 (7) 0.0017 (7)
N1 0.016 (4) 0.019 (4) 0.035 (5) 0.000 (3) 0.007 (3) 0.007 (3)
N2 0.026 (4) 0.025 (5) 0.023 (4) 0.009 (3) 0.001 (3) −0.001 (3)
C1 0.017 (4) 0.030 (5) 0.024 (5) −0.006 (4) 0.002 (4) −0.001 (4)
C2 0.023 (5) 0.027 (5) 0.031 (6) 0.000 (4) 0.005 (4) 0.003 (4)
C3 0.029 (5) 0.031 (6) 0.033 (6) −0.002 (4) 0.011 (5) 0.006 (4)
C4 0.031 (5) 0.034 (6) 0.023 (5) −0.002 (4) 0.009 (4) 0.004 (4)
C5 0.029 (5) 0.016 (5) 0.040 (6) 0.001 (4) 0.001 (5) 0.005 (4)
C6 0.035 (6) 0.029 (6) 0.034 (6) 0.008 (4) 0.016 (5) 0.005 (5)
C7 0.023 (5) 0.019 (5) 0.031 (5) 0.007 (4) 0.011 (4) 0.009 (4)
C8 0.042 (6) 0.027 (5) 0.021 (5) −0.001 (4) 0.009 (4) 0.000 (4)
C9 0.030 (5) 0.025 (5) 0.025 (5) −0.002 (4) 0.014 (4) 0.001 (4)
C10 0.035 (6) 0.025 (5) 0.033 (6) −0.004 (4) 0.013 (5) −0.012 (4)
C11 0.030 (5) 0.022 (5) 0.033 (6) 0.004 (4) 0.004 (4) −0.012 (4)
C12 0.023 (5) 0.032 (6) 0.032 (6) −0.007 (4) 0.010 (4) −0.001 (4)
C13 0.025 (5) 0.031 (6) 0.037 (6) 0.004 (4) 0.010 (4) −0.002 (5)
C14 0.036 (6) 0.017 (5) 0.026 (5) 0.002 (4) 0.021 (4) −0.001 (4)
C15 0.029 (5) 0.027 (5) 0.024 (5) 0.001 (4) 0.001 (4) 0.000 (4)
C16 0.034 (6) 0.036 (6) 0.033 (6) −0.006 (5) 0.004 (5) 0.006 (5)
C17 0.033 (6) 0.029 (6) 0.042 (7) −0.012 (4) −0.004 (5) 0.010 (5)
C18 0.045 (7) 0.024 (6) 0.045 (7) 0.002 (5) 0.005 (5) −0.001 (5)
C19 0.026 (5) 0.035 (6) 0.025 (5) 0.004 (4) 0.004 (4) 0.001 (4)
C20 0.034 (5) 0.022 (5) 0.021 (5) −0.004 (4) 0.004 (4) −0.002 (4)
C21 0.027 (5) 0.034 (6) 0.028 (6) −0.007 (4) −0.001 (4) 0.001 (4)
C22 0.021 (5) 0.029 (5) 0.031 (6) 0.003 (4) 0.002 (4) 0.001 (4)
C23 0.036 (6) 0.029 (6) 0.031 (6) 0.006 (5) 0.010 (5) −0.005 (5)
C24 0.038 (6) 0.028 (6) 0.040 (7) −0.006 (5) 0.012 (5) −0.013 (5)
C25 0.036 (6) 0.036 (6) 0.022 (5) −0.005 (5) 0.004 (4) −0.001 (4)
C26 0.032 (6) 0.033 (6) 0.046 (7) 0.009 (5) −0.012 (5) −0.015 (5)
C27 0.053 (8) 0.034 (7) 0.051 (8) 0.017 (6) 0.011 (6) −0.004 (6)
C28 0.038 (6) 0.037 (6) 0.035 (6) −0.007 (5) 0.005 (5) −0.011 (5)

Geometric parameters (Å, °)

Ru1—C1 2.048 (11) C13—H13 0.9600
Ru1—C9 2.095 (10) C14—H14 0.9600
Ru1—C10 2.177 (11) C15—C18 1.533 (15)
Ru1—C13 2.177 (10) C15—C17 1.538 (14)
Ru1—C14 2.192 (10) C15—C16 1.553 (15)
Ru1—C11 2.198 (10) C16—H16A 0.9599
Ru1—C12 2.267 (11) C16—H16B 0.9599
Ru1—Cl2 2.4613 (18) C16—H16C 0.9599
Ru1—Cl1 2.5267 (17) C17—H17A 0.9599
N1—C2 1.376 (13) C17—H17B 0.9599
N1—C1 1.383 (13) C17—H17C 0.9599
N1—C8 1.457 (13) C18—H18A 0.9599
N2—C1 1.366 (13) C18—H18B 0.9599
N2—C7 1.390 (13) C18—H18C 0.9599
N2—C19 1.494 (13) C19—C20 1.495 (14)
C2—C7 1.394 (15) C19—H19A 0.9600
C2—C3 1.399 (15) C19—H19B 0.9600
C3—C4 1.372 (16) C20—C21 1.405 (15)
C3—H3 0.9600 C20—C25 1.425 (15)
C4—C5 1.407 (15) C21—C22 1.418 (15)
C4—H4 0.9600 C21—C26 1.489 (15)
C5—C6 1.365 (15) C22—C23 1.387 (15)
C5—H5 0.9600 C22—H22 0.9600
C6—C7 1.392 (15) C23—C24 1.380 (16)
C6—H6 0.9600 C23—C27 1.511 (15)
C8—C9 1.540 (14) C24—C25 1.404 (16)
C8—H8A 0.9600 C24—H24 0.9600
C8—H8B 0.9600 C25—C28 1.509 (16)
C9—C10 1.414 (15) C26—H26A 0.9599
C9—C14 1.442 (16) C26—H26B 0.9599
C10—C11 1.427 (16) C26—H26C 0.9599
C10—H10 0.9600 C27—H27A 0.9599
C11—C12 1.410 (15) C27—H27B 0.9599
C11—H11 0.9600 C27—H27C 0.9599
C12—C13 1.438 (14) C28—H28A 0.9599
C12—C15 1.529 (14) C28—H28B 0.9599
C13—C14 1.411 (14) C28—H28C 0.9599
C1—Ru1—C9 79.8 (4) Ru1—C11—H11 130.2
C1—Ru1—C10 97.3 (4) C11—C12—C13 115.6 (10)
C9—Ru1—C10 38.6 (4) C11—C12—C15 123.4 (9)
C1—Ru1—C13 131.3 (4) C13—C12—C15 121.0 (10)
C9—Ru1—C13 68.8 (4) C11—C12—Ru1 68.9 (6)
C10—Ru1—C13 80.9 (4) C13—C12—Ru1 67.8 (6)
C1—Ru1—C14 95.7 (4) C15—C12—Ru1 131.5 (7)
C9—Ru1—C14 39.2 (4) C14—C13—C12 124.7 (11)
C10—Ru1—C14 70.0 (4) C14—C13—Ru1 71.7 (6)
C13—Ru1—C14 37.7 (4) C12—C13—Ru1 74.6 (6)
C1—Ru1—C11 133.7 (4) C14—C13—H13 117.7
C9—Ru1—C11 68.8 (4) C12—C13—H13 117.7
C10—Ru1—C11 38.1 (4) Ru1—C13—H13 128.7
C13—Ru1—C11 66.9 (4) C13—C14—C9 115.7 (9)
C14—Ru1—C11 81.1 (4) C13—C14—Ru1 70.6 (6)
C1—Ru1—C12 161.6 (4) C9—C14—Ru1 66.8 (6)
C9—Ru1—C12 81.8 (4) C13—C14—H14 122.1
C10—Ru1—C12 68.5 (4) C9—C14—H14 122.1
C13—Ru1—C12 37.7 (4) Ru1—C14—H14 133.1
C14—Ru1—C12 68.9 (3) C12—C15—C18 109.5 (9)
C11—Ru1—C12 36.8 (4) C12—C15—C17 110.9 (9)
C1—Ru1—Cl2 93.9 (3) C18—C15—C17 109.4 (9)
C9—Ru1—Cl2 133.5 (3) C12—C15—C16 111.6 (9)
C10—Ru1—Cl2 98.4 (3) C18—C15—C16 108.5 (9)
C13—Ru1—Cl2 134.6 (3) C17—C15—C16 106.9 (9)
C14—Ru1—Cl2 165.8 (3) C15—C16—H16A 109.5
C11—Ru1—Cl2 84.7 (3) C15—C16—H16B 109.5
C12—Ru1—Cl2 99.6 (3) H16A—C16—H16B 109.5
C1—Ru1—Cl1 87.9 (3) C15—C16—H16C 109.5
C9—Ru1—Cl1 133.1 (3) H16A—C16—H16C 109.5
C10—Ru1—Cl1 167.9 (3) H16B—C16—H16C 109.5
C13—Ru1—Cl1 87.5 (3) C15—C17—H17A 109.5
C14—Ru1—Cl1 98.7 (3) C15—C17—H17B 109.5
C11—Ru1—Cl1 138.3 (3) H17A—C17—H17B 109.5
C12—Ru1—Cl1 104.0 (3) C15—C17—H17C 109.5
Cl2—Ru1—Cl1 92.04 (7) H17A—C17—H17C 109.5
C2—N1—C1 112.0 (9) H17B—C17—H17C 109.5
C2—N1—C8 126.5 (9) C15—C18—H18A 109.5
C1—N1—C8 121.5 (8) C15—C18—H18B 109.5
C1—N2—C7 111.3 (8) H18A—C18—H18B 109.5
C1—N2—C19 122.3 (9) C15—C18—H18C 109.5
C7—N2—C19 126.4 (8) H18A—C18—H18C 109.5
N2—C1—N1 104.2 (9) H18B—C18—H18C 109.5
N2—C1—Ru1 140.1 (8) N2—C19—C20 114.0 (8)
N1—C1—Ru1 115.6 (7) N2—C19—H19A 108.8
N1—C2—C7 105.8 (9) C20—C19—H19A 108.8
N1—C2—C3 130.9 (10) N2—C19—H19B 108.8
C7—C2—C3 123.3 (10) C20—C19—H19B 108.8
C4—C3—C2 115.9 (10) H19A—C19—H19B 107.7
C4—C3—H3 122.1 C21—C20—C25 119.8 (10)
C2—C3—H3 122.1 C21—C20—C19 120.5 (9)
C3—C4—C5 122.4 (10) C25—C20—C19 119.6 (10)
C3—C4—H4 118.8 C20—C21—C22 118.7 (10)
C5—C4—H4 118.8 C20—C21—C26 122.2 (10)
C6—C5—C4 120.1 (10) C22—C21—C26 118.9 (9)
C6—C5—H5 119.9 C23—C22—C21 121.8 (10)
C4—C5—H5 119.9 C23—C22—H22 119.1
C5—C6—C7 119.8 (10) C21—C22—H22 119.1
C5—C6—H6 120.1 C24—C23—C22 118.7 (10)
C7—C6—H6 120.1 C24—C23—C27 120.8 (11)
N2—C7—C6 134.7 (10) C22—C23—C27 120.5 (11)
N2—C7—C2 106.7 (8) C23—C24—C25 122.3 (10)
C6—C7—C2 118.5 (9) C23—C24—H24 118.8
N1—C8—C9 107.4 (8) C25—C24—H24 118.8
N1—C8—H8A 110.2 C24—C25—C20 118.6 (10)
C9—C8—H8A 110.2 C24—C25—C28 120.0 (10)
N1—C8—H8B 110.2 C20—C25—C28 121.3 (10)
C9—C8—H8B 110.2 C21—C26—H26A 109.5
H8A—C8—H8B 108.5 C21—C26—H26B 109.5
C10—C9—C14 122.8 (9) H26A—C26—H26B 109.5
C10—C9—C8 118.7 (10) C21—C26—H26C 109.5
C14—C9—C8 117.6 (9) H26A—C26—H26C 109.5
C10—C9—Ru1 73.8 (6) H26B—C26—H26C 109.5
C14—C9—Ru1 74.0 (6) C23—C27—H27A 109.5
C8—C9—Ru1 115.6 (7) C23—C27—H27B 109.5
C9—C10—C11 117.3 (11) H27A—C27—H27B 109.5
C9—C10—Ru1 67.6 (6) C23—C27—H27C 109.5
C11—C10—Ru1 71.8 (6) H27A—C27—H27C 109.5
C9—C10—H10 121.3 H27B—C27—H27C 109.5
C11—C10—H10 121.3 C25—C28—H28A 109.5
Ru1—C10—H10 131.9 C25—C28—H28B 109.5
C12—C11—C10 123.6 (10) H28A—C28—H28B 109.5
C12—C11—Ru1 74.3 (6) C25—C28—H28C 109.5
C10—C11—Ru1 70.2 (6) H28A—C28—H28C 109.5
C12—C11—H11 118.2 H28B—C28—H28C 109.5
C10—C11—H11 118.2
C7—N2—C1—N1 −0.3 (11) C14—Ru1—C11—C10 −68.9 (6)
C19—N2—C1—N1 −177.2 (8) C12—Ru1—C11—C10 −135.5 (9)
C7—N2—C1—Ru1 174.3 (9) Cl2—Ru1—C11—C10 110.8 (6)
C19—N2—C1—Ru1 −2.5 (16) Cl1—Ru1—C11—C10 −162.0 (5)
C2—N1—C1—N2 0.6 (11) C10—C11—C12—C13 1.7 (15)
C8—N1—C1—N2 −179.5 (9) Ru1—C11—C12—C13 −50.7 (8)
C2—N1—C1—Ru1 −175.6 (7) C10—C11—C12—C15 179.1 (9)
C8—N1—C1—Ru1 4.4 (12) Ru1—C11—C12—C15 126.7 (10)
C9—Ru1—C1—N2 −175.8 (12) C10—C11—C12—Ru1 52.4 (9)
C10—Ru1—C1—N2 149.7 (11) C1—Ru1—C12—C11 −68.9 (13)
C13—Ru1—C1—N2 −126.1 (11) C9—Ru1—C12—C11 −65.3 (7)
C14—Ru1—C1—N2 −139.8 (11) C10—Ru1—C12—C11 −27.7 (6)
C11—Ru1—C1—N2 137.2 (10) C13—Ru1—C12—C11 −131.1 (9)
C12—Ru1—C1—N2 −172.2 (10) C14—Ru1—C12—C11 −103.7 (7)
Cl2—Ru1—C1—N2 50.7 (11) Cl2—Ru1—C12—C11 67.7 (6)
Cl1—Ru1—C1—N2 −41.3 (11) Cl1—Ru1—C12—C11 162.2 (6)
C9—Ru1—C1—N1 −1.6 (7) C1—Ru1—C12—C13 62.2 (14)
C10—Ru1—C1—N1 −36.1 (8) C9—Ru1—C12—C13 65.8 (7)
C13—Ru1—C1—N1 48.1 (9) C10—Ru1—C12—C13 103.4 (7)
C14—Ru1—C1—N1 34.4 (8) C14—Ru1—C12—C13 27.3 (6)
C11—Ru1—C1—N1 −48.6 (9) C11—Ru1—C12—C13 131.1 (9)
C12—Ru1—C1—N1 2.0 (16) Cl2—Ru1—C12—C13 −161.3 (6)
Cl2—Ru1—C1—N1 −135.1 (7) Cl1—Ru1—C12—C13 −66.7 (6)
Cl1—Ru1—C1—N1 133.0 (7) C1—Ru1—C12—C15 174.6 (10)
C1—N1—C2—C7 −0.6 (11) C9—Ru1—C12—C15 178.2 (10)
C8—N1—C2—C7 179.4 (9) C10—Ru1—C12—C15 −144.2 (10)
C1—N1—C2—C3 176.0 (11) C13—Ru1—C12—C15 112.4 (12)
C8—N1—C2—C3 −3.9 (18) C14—Ru1—C12—C15 139.7 (10)
N1—C2—C3—C4 −177.7 (11) C11—Ru1—C12—C15 −116.5 (12)
C7—C2—C3—C4 −1.6 (16) Cl2—Ru1—C12—C15 −48.9 (9)
C2—C3—C4—C5 0.6 (16) Cl1—Ru1—C12—C15 45.7 (10)
C3—C4—C5—C6 0.6 (17) C11—C12—C13—C14 −2.8 (15)
C4—C5—C6—C7 −0.8 (17) C15—C12—C13—C14 179.8 (9)
C1—N2—C7—C6 −177.5 (12) Ru1—C12—C13—C14 −54.0 (9)
C19—N2—C7—C6 −0.8 (19) C11—C12—C13—Ru1 51.2 (8)
C1—N2—C7—C2 0.0 (11) C15—C12—C13—Ru1 −126.2 (9)
C19—N2—C7—C2 176.6 (9) C1—Ru1—C13—C14 −22.6 (9)
C5—C6—C7—N2 177.1 (11) C9—Ru1—C13—C14 30.9 (6)
C5—C6—C7—C2 −0.1 (16) C10—Ru1—C13—C14 69.1 (7)
N1—C2—C7—N2 0.4 (11) C11—Ru1—C13—C14 106.1 (7)
C3—C2—C7—N2 −176.5 (10) C12—Ru1—C13—C14 135.5 (10)
N1—C2—C7—C6 178.3 (10) Cl2—Ru1—C13—C14 161.9 (5)
C3—C2—C7—C6 1.4 (16) Cl1—Ru1—C13—C14 −107.7 (6)
C2—N1—C8—C9 175.0 (9) C1—Ru1—C13—C12 −158.1 (6)
C1—N1—C8—C9 −4.9 (13) C9—Ru1—C13—C12 −104.6 (7)
N1—C8—C9—C10 88.1 (11) C10—Ru1—C13—C12 −66.4 (7)
N1—C8—C9—C14 −81.3 (11) C14—Ru1—C13—C12 −135.5 (10)
N1—C8—C9—Ru1 3.3 (11) C11—Ru1—C13—C12 −29.4 (6)
C1—Ru1—C9—C10 −115.6 (7) Cl2—Ru1—C13—C12 26.4 (8)
C13—Ru1—C9—C10 102.2 (7) Cl1—Ru1—C13—C12 116.8 (6)
C14—Ru1—C9—C10 132.1 (9) C12—C13—C14—C9 4.6 (15)
C11—Ru1—C9—C10 29.8 (6) Ru1—C13—C14—C9 −50.7 (8)
C12—Ru1—C9—C10 65.5 (7) C12—C13—C14—Ru1 55.2 (9)
Cl2—Ru1—C9—C10 −29.9 (8) C10—C9—C14—C13 −5.5 (14)
Cl1—Ru1—C9—C10 167.0 (5) C8—C9—C14—C13 163.5 (9)
C1—Ru1—C9—C14 112.3 (6) Ru1—C9—C14—C13 52.6 (8)
C10—Ru1—C9—C14 −132.1 (9) C10—C9—C14—Ru1 −58.0 (9)
C13—Ru1—C9—C14 −29.8 (6) C8—C9—C14—Ru1 110.9 (9)
C11—Ru1—C9—C14 −102.2 (6) C1—Ru1—C14—C13 163.1 (7)
C12—Ru1—C9—C14 −66.5 (6) C9—Ru1—C14—C13 −130.7 (9)
Cl2—Ru1—C9—C14 −162.0 (4) C10—Ru1—C14—C13 −101.2 (7)
Cl1—Ru1—C9—C14 35.0 (7) C11—Ru1—C14—C13 −63.4 (7)
C1—Ru1—C9—C8 −1.1 (8) C12—Ru1—C14—C13 −27.3 (6)
C10—Ru1—C9—C8 114.5 (11) Cl2—Ru1—C14—C13 −64.4 (14)
C13—Ru1—C9—C8 −143.3 (9) Cl1—Ru1—C14—C13 74.4 (6)
C14—Ru1—C9—C8 −113.4 (10) C1—Ru1—C14—C9 −66.2 (6)
C11—Ru1—C9—C8 144.3 (9) C10—Ru1—C14—C9 29.5 (6)
C12—Ru1—C9—C8 −180.0 (8) C13—Ru1—C14—C9 130.7 (9)
Cl2—Ru1—C9—C8 84.6 (8) C11—Ru1—C14—C9 67.3 (6)
Cl1—Ru1—C9—C8 −78.5 (9) C12—Ru1—C14—C9 103.3 (6)
C14—C9—C10—C11 4.6 (15) Cl2—Ru1—C14—C9 66.3 (13)
C8—C9—C10—C11 −164.3 (9) Cl1—Ru1—C14—C9 −155.0 (5)
Ru1—C9—C10—C11 −53.5 (8) C11—C12—C15—C18 115.9 (11)
C14—C9—C10—Ru1 58.1 (9) C13—C12—C15—C18 −66.9 (13)
C8—C9—C10—Ru1 −110.7 (9) Ru1—C12—C15—C18 −153.6 (8)
C1—Ru1—C10—C9 63.5 (7) C11—C12—C15—C17 −4.9 (15)
C13—Ru1—C10—C9 −67.4 (7) C13—C12—C15—C17 172.3 (10)
C14—Ru1—C10—C9 −30.0 (6) Ru1—C12—C15—C17 85.6 (11)
C11—Ru1—C10—C9 −131.2 (9) C11—C12—C15—C16 −124.0 (11)
C12—Ru1—C10—C9 −104.4 (7) C13—C12—C15—C16 53.2 (13)
Cl2—Ru1—C10—C9 158.6 (6) Ru1—C12—C15—C16 −33.5 (13)
Cl1—Ru1—C10—C9 −51.6 (17) C1—N2—C19—C20 −151.5 (9)
C1—Ru1—C10—C11 −165.3 (6) C7—N2—C19—C20 32.1 (14)
C9—Ru1—C10—C11 131.2 (9) N2—C19—C20—C21 67.2 (13)
C13—Ru1—C10—C11 63.9 (6) N2—C19—C20—C25 −113.5 (11)
C14—Ru1—C10—C11 101.3 (7) C25—C20—C21—C22 −0.3 (15)
C12—Ru1—C10—C11 26.8 (6) C19—C20—C21—C22 179.0 (9)
Cl2—Ru1—C10—C11 −70.2 (6) C25—C20—C21—C26 −177.0 (11)
Cl1—Ru1—C10—C11 79.6 (15) C19—C20—C21—C26 2.3 (16)
C9—C10—C11—C12 −2.7 (15) C20—C21—C22—C23 1.1 (16)
Ru1—C10—C11—C12 −54.1 (9) C26—C21—C22—C23 177.9 (11)
C9—C10—C11—Ru1 51.5 (8) C21—C22—C23—C24 −0.4 (17)
C1—Ru1—C11—C12 155.9 (6) C21—C22—C23—C27 178.3 (11)
C9—Ru1—C11—C12 105.3 (7) C22—C23—C24—C25 −1.2 (17)
C10—Ru1—C11—C12 135.5 (9) C27—C23—C24—C25 −179.8 (11)
C13—Ru1—C11—C12 30.1 (6) C23—C24—C25—C20 1.9 (17)
C14—Ru1—C11—C12 66.6 (6) C23—C24—C25—C28 178.8 (11)
Cl2—Ru1—C11—C12 −113.7 (6) C21—C20—C25—C24 −1.1 (16)
Cl1—Ru1—C11—C12 −26.5 (8) C19—C20—C25—C24 179.6 (10)
C1—Ru1—C11—C10 20.4 (9) C21—C20—C25—C28 −178.0 (10)
C9—Ru1—C11—C10 −30.2 (6) C19—C20—C25—C28 2.7 (15)
C13—Ru1—C11—C10 −105.4 (7)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C14—H14···Cl2i 0.96 2.65 3.406 (11) 135
C16—H16C···Br1 0.96 2.92 3.563 (11) 125
C19—H19A···Br1 0.96 2.92 3.323 (11) 106

Symmetry codes: (i) x+1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: AT2686).

References

  1. Arduengo, A. J., Harlow, R. L. & Kline, M. (1991). J. Am. Chem. Soc.113, 361–363.
  2. Arduengo, A. J. & Krafczyc, R. (1998). Chem. Ztg.32, 6–14.
  3. Arslan, H., VanDerveer, D., Özdemir, I., Çetinkaya, B. & Demir, S. (2004b). Z. Kristallogr. New Cryst. Struct.219, 377–378.
  4. Arslan, H., VanDerveer, D., Özdemir, I., Çetinkaya, B. & Demir, S. (2005a). J. Chem. Crystallogr.35, 491–495.
  5. Arslan, H., VanDerveer, D., Özdemir, I., Çetinkaya, B. & Yaşar, S. (2004a). Z. Kristallogr. New Cryst. Struct.219, 44–46.
  6. Arslan, H., VanDerveer, D., Özdemir, İ., Demir, S. & Çetinkaya, B. (2007a). Acta Cryst. E63, m770–m771.
  7. Arslan, H., VanDerveer, D., Özdemir, I., Yaşar, S. & Çetinkaya, B. (2005b). Acta Cryst. E61, m1873–m1875.
  8. Arslan, H., VanDerveer, D., Yaşar, S., Özdemir, I. & Çetinkaya, B. (2007b). Acta Cryst. E63, m942–m944.
  9. Arslan, H., VanDerveer, D., Yaşar, S., Özdemir, İ. & Çetinkaya, B. (2007c). Acta Cryst. E63, m1001–m1003.
  10. Begley, M. J., Harrison, S. & Wright, A. H. (1991). Acta Cryst. C47, 318–320.
  11. Çetinkaya, B., Demir, S., Özdemir, I., Toupet, L., Semeril, D., Bruneau, C. & Dixneuf, P. H. (2001). New J. Chem.25, 519–521. [DOI] [PubMed]
  12. Çetinkaya, B., Demir, S., Özdemir, İ., Toupet, L., Semeril, D., Bruneau, C. & Dixneuf, P. H. (2003). Chem. Eur. J.9, 2323–2330. [DOI] [PubMed]
  13. Çetinkaya, B., Seckin, T., Gürbüz, N. & Özdemir, I. (2002). J. Mol. Catal. A, 184, 31–38.
  14. Herrmann, W. A. (2002). Angew. Chem. Int. Ed.41, 1290–1309.
  15. Herrmann, W. A., Elison, M., Fischer, J., Köcher, C. & Artus, G. R. J. (1995). Angew. Chem. Int. Ed. Engl.34, 2371–2374.
  16. Jacobson, R. (1998). REQAB Molecular Structure Corporation, The Woodlands, Texas, USA.
  17. Navarro, O., Marion, N., Oonishi, Y., Kelly, R. A. & Nolan, S. P. (2006). J. Org. Chem.71, 685–692. [DOI] [PubMed]
  18. Özdemir, I., Yigit, B., Çetinkaya, B., Ülkü, D., Tahir, M. N. & Arici, C. (2001). J. Organomet. Chem.633, 27–32.
  19. Rigaku/MSC (2006). CrystalClear Rigaku/MSC, The Woodlands, Texas, USA.
  20. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  21. Yaşar, S., Özdemir, I., Çetinkaya, B., Renaud, J. L. & Bruneau, C. (2008). Eur. J. Org. Chem.12, 2142–2149.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808042256/at2686sup1.cif

e-65-00m97-sup1.cif (31.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808042256/at2686Isup2.hkl

e-65-00m97-Isup2.hkl (218KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES