Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Dec 3;65(Pt 1):o10. doi: 10.1107/S1600536808040051

1-Dichloro­acetyl-3,3-dimethyl-2,6-diphenyl­piperidin-4-one

T Kavitha a, S Ponnuswamy b, M Jamesh b, J Umamaheshwari b, M N Ponnuswamy a,*
PMCID: PMC2967931  PMID: 21581563

Abstract

In the title compound, C21H21Cl2NO2, the piperidine ring adopts a distorted boat conformation. The two phenyl rings are approximately perpendicular to each other, with a dihedral angle of 86.12 (7)°. Mol­ecules are linked into centrosymmetric dimers by pairs of bifurcated C—H⋯O hydrogen bonds, forming R 2 2(10) and R 2 2(14) ring motifs, and an intramolecular C—H⋯O link also occurs.

Related literature

For general backround, see: Ponnuswamy et al. (2002). For details of hydrogen-bond motifs, see: Bernstein et al. (1995). For ring puckering and asymmetry parameters, see: Cremer & Pople (1975); Nardelli (1983). For hybridization, see: Beddoes et al. (1986).graphic file with name e-65-00o10-scheme1.jpg

Experimental

Crystal data

  • C21H21Cl2NO2

  • M r = 390.29

  • Triclinic, Inline graphic

  • a = 9.1084 (2) Å

  • b = 10.8992 (3) Å

  • c = 10.9918 (3) Å

  • α = 63.879 (1)°

  • β = 85.343 (2)°

  • γ = 79.029 (1)°

  • V = 961.84 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.35 mm−1

  • T = 293 (2) K

  • 0.30 × 0.26 × 0.20 mm

Data collection

  • Bruker Kappa APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2001) T min = 0.902, T max = 0.933

  • 26977 measured reflections

  • 7709 independent reflections

  • 5516 reflections with I > 2σ(I)

  • R int = 0.021

Refinement

  • R[F 2 > 2σ(F 2)] = 0.057

  • wR(F 2) = 0.180

  • S = 1.03

  • 7709 reflections

  • 235 parameters

  • H-atom parameters constrained

  • Δρmax = 0.80 e Å−3

  • Δρmin = −0.73 e Å−3

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2; data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808040051/ci2724sup1.cif

e-65-00o10-sup1.cif (21.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808040051/ci2724Isup2.hkl

e-65-00o10-Isup2.hkl (369.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C14—H14⋯O2 0.93 2.57 3.250 (2) 130
C2—H2⋯O2i 0.98 2.50 3.4264 (18) 158
C16—H16A⋯O2i 0.96 2.54 3.413 (2) 151

Symmetry code: (i) Inline graphic.

Acknowledgments

TK thanks Dr Babu Varghese, SAIF, IIT–Madras, Chennai, India, for his help with the data collection. SP thanks the UGC, India, for financial support.

supplementary crystallographic information

Comment

The design and synthesis of conformationally anchored molecules are important due its potency and selectivity for designing drugs. The piperidin-4-ones are one such class of compounds to be investigated to understand the stereodynamics and other structural features (Ponnuswamy et al., 2002).

The sum of bond angles around atom N1 (359.6°) indicates sp2 hybridization (Beddoes et al., 1986). The N1—C7 [1.3564 (16) Å] and C7—O2 [1.2149 (17) Å] distances indicate electron delocalization. The piperidine ring adopts a distorted boat conformation, with puckering parameters (Cremer & Pople, 1975) q2 = 0.638 (1) Å, q3 = -0.067 (2) Å and φ2 = 253.4 (1)°, and the asymmetry parameters ΔCs(C2)= 14.4 (1)° (Nardelli, 1983). The best plane through the piperidine ring, N1/C3/C4/C6, forms dihedral angles of 89.31 (6)° and 63.47 (7)°, respectively, with the C9—C4 and C17—C22 phenyl rings. The two phenyl rings are approximately perpendicular to each other, with a dihedral angle of 86.12 (7)°.

The crystal structure is stabilized by intermolecular C—H···O hydrogen bonds. Each atoms C2 and C16 at (x, y, z) donate one proton to bifurcated acceptor O2 at (-x, 1 - y, 1 - z), forming a centrosymmetric dimer (Fig. 2) with R22(10) and R22(14) ring motifs (Bernstein et al., 1995).

Experimental

A mixture of 3,3-dimethyl-cis-2,6-diphenylpiperidin-4-one (1.4 g, 5 mmol), dichloroacetylchloride (1 ml, 10 mmol) and triethylamine (2 ml, 14.4 mmol) in anhydrous benzene (20 ml) was stirred at room temperature for 7 h. The benzene solution was dried over anhydrous Na2SO4 and concentrated. The pasty mass obtained was purified by crystallization from benzene-petroleum ether (333–353 K) in the ratio of 95:5.

Refinement

H atoms were positioned geometrically (C—H = 0.93–0.98 Å) and allowed to ride on their parent atoms, with Uiso(H) = 1.5Ueq(C) for methyl H and 1.2Ueq(C) for other H atoms.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level. H atoms have been omitted for clarity.

Fig. 2.

Fig. 2.

The crystal packing of the title compound, showing hydrogen-bonded (dashed lines) dimers. Atom H16A and H atoms not involved in hydrogen bonding have been omitted.

Crystal data

C21H21Cl2NO2 Z = 2
Mr = 390.29 F(000) = 408
Triclinic, P1 Dx = 1.348 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 9.1084 (2) Å Cell parameters from 7709 reflections
b = 10.8992 (3) Å θ = 2.1–34.0°
c = 10.9918 (3) Å µ = 0.35 mm1
α = 63.879 (1)° T = 293 K
β = 85.343 (2)° Block, colourless
γ = 79.029 (1)° 0.30 × 0.26 × 0.20 mm
V = 961.84 (4) Å3

Data collection

Bruker Kappa APEXII area-detector diffractometer 7709 independent reflections
Radiation source: fine-focus sealed tube 5516 reflections with I > 2σ(I)
graphite Rint = 0.021
ω and φ scans θmax = 34.0°, θmin = 2.1°
Absorption correction: multi-scan (SADABS; Sheldrick, 2001) h = −14→14
Tmin = 0.902, Tmax = 0.933 k = −16→17
26977 measured reflections l = −17→15

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.180 H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0854P)2 + 0.3205P] where P = (Fo2 + 2Fc2)/3
7709 reflections (Δ/σ)max = 0.001
235 parameters Δρmax = 0.80 e Å3
0 restraints Δρmin = −0.73 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C2 0.16315 (15) 0.26040 (13) 0.64530 (13) 0.0320 (2)
H2 0.1059 0.3371 0.5691 0.038*
C3 0.07185 (16) 0.14160 (15) 0.69561 (15) 0.0363 (3)
C4 0.12824 (17) 0.02567 (15) 0.83179 (16) 0.0394 (3)
C5 0.22508 (18) 0.06135 (14) 0.91179 (15) 0.0392 (3)
H5A 0.3283 0.0437 0.8854 0.047*
H5B 0.2169 −0.0007 1.0070 0.047*
C6 0.18871 (15) 0.21096 (13) 0.89554 (13) 0.0315 (2)
H6 0.0976 0.2204 0.9469 0.038*
C7 0.11626 (15) 0.44855 (13) 0.71233 (13) 0.0330 (2)
C8 0.06652 (16) 0.49415 (14) 0.82515 (15) 0.0369 (3)
H8 0.1194 0.4282 0.9094 0.044*
C9 0.32045 (16) 0.23856 (15) 0.59084 (14) 0.0362 (3)
C10 0.4137 (2) 0.11132 (19) 0.62714 (19) 0.0521 (4)
H10 0.3796 0.0306 0.6872 0.062*
C11 0.5572 (2) 0.1029 (3) 0.5750 (2) 0.0641 (5)
H11 0.6186 0.0167 0.6012 0.077*
C12 0.6095 (2) 0.2197 (3) 0.4854 (2) 0.0646 (5)
H12 0.7062 0.2136 0.4516 0.078*
C13 0.5178 (3) 0.3460 (3) 0.4460 (2) 0.0683 (6)
H13 0.5521 0.4258 0.3842 0.082*
C14 0.3742 (2) 0.35549 (19) 0.49753 (19) 0.0522 (4)
H14 0.3129 0.4419 0.4690 0.063*
C15 0.0667 (2) 0.0880 (2) 0.5892 (2) 0.0554 (4)
H15A 0.0305 0.1640 0.5050 0.083*
H15B 0.0010 0.0210 0.6192 0.083*
H15C 0.1654 0.0452 0.5765 0.083*
C16 −0.09026 (17) 0.19822 (18) 0.72274 (18) 0.0458 (3)
H16A −0.1334 0.2725 0.6403 0.069*
H16B −0.0895 0.2320 0.7899 0.069*
H16C −0.1485 0.1252 0.7549 0.069*
C17 0.31594 (16) 0.23865 (14) 0.95568 (15) 0.0377 (3)
C18 0.4438 (2) 0.2760 (2) 0.8816 (2) 0.0564 (4)
H18 0.4525 0.2854 0.7932 0.068*
C19 0.5588 (3) 0.2993 (3) 0.9398 (3) 0.0812 (8)
H19 0.6448 0.3239 0.8903 0.097*
C20 0.5464 (3) 0.2865 (3) 1.0703 (3) 0.0855 (9)
H20 0.6232 0.3041 1.1080 0.103*
C21 0.4221 (3) 0.2479 (3) 1.1444 (3) 0.0749 (7)
H21 0.4148 0.2384 1.2329 0.090*
C22 0.3049 (2) 0.22256 (19) 1.08834 (19) 0.0523 (4)
H22 0.2206 0.1952 1.1396 0.063*
Cl1 0.09918 (6) 0.66177 (5) 0.78274 (6) 0.06072 (15)
Cl2 −0.12724 (6) 0.49086 (7) 0.84645 (7) 0.07096 (18)
N1 0.16105 (12) 0.31050 (11) 0.75154 (11) 0.0301 (2)
O1 0.09414 (17) −0.08818 (13) 0.87624 (15) 0.0596 (4)
O2 0.10590 (15) 0.53523 (11) 0.59509 (11) 0.0479 (3)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C2 0.0360 (6) 0.0327 (5) 0.0303 (5) −0.0091 (5) 0.0005 (4) −0.0151 (5)
C3 0.0389 (7) 0.0372 (6) 0.0392 (6) −0.0133 (5) 0.0001 (5) −0.0198 (5)
C4 0.0407 (7) 0.0324 (6) 0.0470 (7) −0.0117 (5) 0.0009 (6) −0.0170 (5)
C5 0.0463 (7) 0.0291 (6) 0.0386 (7) −0.0096 (5) −0.0051 (6) −0.0094 (5)
C6 0.0327 (6) 0.0314 (5) 0.0299 (5) −0.0085 (4) −0.0015 (4) −0.0113 (4)
C7 0.0356 (6) 0.0300 (5) 0.0337 (6) −0.0068 (5) −0.0007 (5) −0.0134 (5)
C8 0.0397 (7) 0.0334 (6) 0.0399 (7) −0.0043 (5) −0.0015 (5) −0.0186 (5)
C9 0.0390 (7) 0.0403 (6) 0.0343 (6) −0.0114 (5) 0.0046 (5) −0.0196 (5)
C10 0.0480 (9) 0.0468 (8) 0.0557 (9) −0.0050 (7) 0.0120 (7) −0.0203 (7)
C11 0.0477 (10) 0.0720 (13) 0.0679 (12) 0.0016 (9) 0.0097 (9) −0.0323 (10)
C12 0.0434 (9) 0.0902 (16) 0.0660 (12) −0.0188 (10) 0.0178 (8) −0.0393 (11)
C13 0.0647 (12) 0.0741 (13) 0.0692 (13) −0.0349 (11) 0.0304 (10) −0.0298 (11)
C14 0.0571 (10) 0.0460 (8) 0.0521 (9) −0.0181 (7) 0.0171 (8) −0.0193 (7)
C15 0.0692 (12) 0.0611 (10) 0.0551 (10) −0.0264 (9) 0.0026 (8) −0.0368 (9)
C16 0.0356 (7) 0.0511 (8) 0.0496 (8) −0.0138 (6) −0.0013 (6) −0.0183 (7)
C17 0.0371 (6) 0.0323 (6) 0.0439 (7) −0.0035 (5) −0.0108 (5) −0.0158 (5)
C18 0.0418 (8) 0.0620 (11) 0.0710 (12) −0.0179 (7) −0.0038 (8) −0.0296 (9)
C19 0.0471 (11) 0.0829 (16) 0.128 (2) −0.0202 (10) −0.0174 (12) −0.0520 (16)
C20 0.0652 (14) 0.0734 (14) 0.136 (2) 0.0039 (11) −0.0552 (16) −0.0588 (16)
C21 0.0874 (16) 0.0676 (12) 0.0810 (14) 0.0157 (11) −0.0504 (13) −0.0454 (11)
C22 0.0588 (10) 0.0522 (9) 0.0486 (9) 0.0007 (7) −0.0185 (7) −0.0254 (7)
Cl1 0.0769 (3) 0.0499 (2) 0.0729 (3) −0.0258 (2) 0.0075 (2) −0.0378 (2)
Cl2 0.0479 (3) 0.0867 (4) 0.1055 (5) −0.0242 (2) 0.0255 (3) −0.0656 (4)
N1 0.0339 (5) 0.0282 (4) 0.0290 (5) −0.0072 (4) −0.0003 (4) −0.0124 (4)
O1 0.0717 (9) 0.0355 (5) 0.0709 (8) −0.0231 (6) −0.0097 (7) −0.0151 (6)
O2 0.0706 (8) 0.0324 (5) 0.0350 (5) −0.0071 (5) −0.0009 (5) −0.0102 (4)

Geometric parameters (Å, °)

C2—N1 1.4886 (17) C11—C12 1.367 (3)
C2—C9 1.525 (2) C11—H11 0.93
C2—C3 1.5424 (19) C12—C13 1.369 (3)
C2—H2 0.98 C12—H12 0.93
C3—C4 1.521 (2) C13—C14 1.387 (3)
C3—C15 1.528 (2) C13—H13 0.93
C3—C16 1.547 (2) C14—H14 0.93
C4—O1 1.2096 (18) C15—H15A 0.96
C4—C5 1.503 (2) C15—H15B 0.96
C5—C6 1.5324 (19) C15—H15C 0.96
C5—H5A 0.97 C16—H16A 0.96
C5—H5B 0.97 C16—H16B 0.96
C6—N1 1.4814 (16) C16—H16C 0.96
C6—C17 1.5179 (18) C17—C18 1.385 (3)
C6—H6 0.98 C17—C22 1.387 (2)
C7—O2 1.2149 (17) C18—C19 1.387 (3)
C7—N1 1.3564 (16) C18—H18 0.93
C7—C8 1.535 (2) C19—C20 1.375 (4)
C8—Cl1 1.7544 (15) C19—H19 0.93
C8—Cl2 1.7664 (16) C20—C21 1.361 (4)
C8—H8 0.98 C20—H20 0.93
C9—C14 1.386 (2) C21—C22 1.401 (3)
C9—C10 1.387 (2) C21—H21 0.93
C10—C11 1.388 (3) C22—H22 0.93
C10—H10 0.93
N1—C2—C9 111.62 (11) C10—C11—H11 119.6
N1—C2—C3 108.79 (10) C11—C12—C13 119.27 (18)
C9—C2—C3 119.05 (12) C11—C12—H12 120.4
N1—C2—H2 105.4 C13—C12—H12 120.4
C9—C2—H2 105.4 C12—C13—C14 120.42 (19)
C3—C2—H2 105.4 C12—C13—H13 119.8
C4—C3—C15 112.03 (13) C14—C13—H13 119.8
C4—C3—C2 111.80 (11) C9—C14—C13 121.16 (18)
C15—C3—C2 111.26 (13) C9—C14—H14 119.4
C4—C3—C16 104.84 (12) C13—C14—H14 119.4
C15—C3—C16 108.17 (14) C3—C15—H15A 109.5
C2—C3—C16 108.41 (12) C3—C15—H15B 109.5
O1—C4—C5 121.20 (14) H15A—C15—H15B 109.5
O1—C4—C3 122.41 (14) C3—C15—H15C 109.5
C5—C4—C3 116.35 (11) H15A—C15—H15C 109.5
C4—C5—C6 115.68 (12) H15B—C15—H15C 109.5
C4—C5—H5A 108.4 C3—C16—H16A 109.5
C6—C5—H5A 108.4 C3—C16—H16B 109.5
C4—C5—H5B 108.4 H16A—C16—H16B 109.5
C6—C5—H5B 108.4 C3—C16—H16C 109.5
H5A—C5—H5B 107.4 H16A—C16—H16C 109.5
N1—C6—C17 112.02 (11) H16B—C16—H16C 109.5
N1—C6—C5 110.99 (11) C18—C17—C22 119.73 (16)
C17—C6—C5 108.73 (11) C18—C17—C6 121.13 (14)
N1—C6—H6 108.3 C22—C17—C6 119.12 (15)
C17—C6—H6 108.3 C17—C18—C19 119.8 (2)
C5—C6—H6 108.3 C17—C18—H18 120.1
O2—C7—N1 124.28 (13) C19—C18—H18 120.1
O2—C7—C8 119.02 (12) C20—C19—C18 120.5 (3)
N1—C7—C8 116.59 (11) C20—C19—H19 119.8
C7—C8—Cl1 111.99 (10) C18—C19—H19 119.8
C7—C8—Cl2 106.14 (10) C21—C20—C19 120.06 (19)
Cl1—C8—Cl2 109.75 (8) C21—C20—H20 120.0
C7—C8—H8 109.6 C19—C20—H20 120.0
Cl1—C8—H8 109.6 C20—C21—C22 120.6 (2)
Cl2—C8—H8 109.6 C20—C21—H21 119.7
C14—C9—C10 117.55 (15) C22—C21—H21 119.7
C14—C9—C2 117.21 (14) C17—C22—C21 119.4 (2)
C10—C9—C2 125.24 (13) C17—C22—H22 120.3
C9—C10—C11 120.81 (18) C21—C22—H22 120.3
C9—C10—H10 119.6 C7—N1—C6 122.10 (11)
C11—C10—H10 119.6 C7—N1—C2 116.79 (10)
C12—C11—C10 120.7 (2) C6—N1—C2 120.69 (10)
C12—C11—H11 119.6
N1—C2—C3—C4 −55.28 (15) C11—C12—C13—C14 0.8 (4)
C9—C2—C3—C4 74.08 (15) C10—C9—C14—C13 −2.2 (3)
N1—C2—C3—C15 178.63 (13) C2—C9—C14—C13 177.88 (18)
C9—C2—C3—C15 −52.01 (18) C12—C13—C14—C9 0.7 (3)
N1—C2—C3—C16 59.80 (14) N1—C6—C17—C18 −39.86 (19)
C9—C2—C3—C16 −170.84 (12) C5—C6—C17—C18 83.18 (17)
C15—C3—C4—O1 −38.8 (2) N1—C6—C17—C22 141.83 (14)
C2—C3—C4—O1 −164.51 (16) C5—C6—C17—C22 −95.13 (16)
C16—C3—C4—O1 78.24 (19) C22—C17—C18—C19 −1.1 (3)
C15—C3—C4—C5 143.33 (15) C6—C17—C18—C19 −179.38 (18)
C2—C3—C4—C5 17.66 (18) C17—C18—C19—C20 −0.4 (4)
C16—C3—C4—C5 −99.59 (15) C18—C19—C20—C21 1.3 (4)
O1—C4—C5—C6 −144.98 (16) C19—C20—C21—C22 −0.7 (4)
C3—C4—C5—C6 32.88 (19) C18—C17—C22—C21 1.6 (3)
C4—C5—C6—N1 −43.61 (17) C6—C17—C22—C21 179.98 (15)
C4—C5—C6—C17 −167.26 (13) C20—C21—C22—C17 −0.7 (3)
O2—C7—C8—Cl1 −33.06 (17) O2—C7—N1—C6 172.74 (13)
N1—C7—C8—Cl1 150.79 (10) C8—C7—N1—C6 −11.34 (18)
O2—C7—C8—Cl2 86.69 (15) O2—C7—N1—C2 −14.7 (2)
N1—C7—C8—Cl2 −89.46 (13) C8—C7—N1—C2 161.25 (11)
N1—C2—C9—C14 −78.53 (17) C17—C6—N1—C7 −63.04 (16)
C3—C2—C9—C14 153.41 (15) C5—C6—N1—C7 175.21 (12)
N1—C2—C9—C10 101.51 (17) C17—C6—N1—C2 124.65 (13)
C3—C2—C9—C10 −26.6 (2) C5—C6—N1—C2 2.90 (16)
C14—C9—C10—C11 2.2 (3) C9—C2—N1—C7 99.87 (13)
C2—C9—C10—C11 −177.88 (17) C3—C2—N1—C7 −126.77 (12)
C9—C10—C11—C12 −0.7 (3) C9—C2—N1—C6 −87.43 (14)
C10—C11—C12—C13 −0.8 (4) C3—C2—N1—C6 45.93 (15)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C14—H14···O2 0.93 2.57 3.250 (2) 130
C2—H2···O2i 0.98 2.50 3.4264 (18) 158
C16—H16A···O2i 0.96 2.54 3.413 (2) 151

Symmetry codes: (i) −x, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI2724).

References

  1. Beddoes, R. L., Dalton, L., Joule, T. A., Mills, O. S., Street, J. D. & Watt, C. I. F. (1986). J. Chem. Soc. Perkin Trans. 2, pp. 787–797.
  2. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  3. Bruker (2004). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc.97, 1354–1358.
  5. Nardelli, M. (1983). Acta Cryst. C39, 1141–1142.
  6. Ponnuswamy, S., Venkatraj, M., Jeyaraman, R., Suresh Kumar, M., Kumaran, D. & Ponnuswamy, M. N. (2002). Indian J. Chem. Sect. B, 41, 614–627.
  7. Sheldrick, G. M. (2001). SADABS University of Göttingen, Germany.
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808040051/ci2724sup1.cif

e-65-00o10-sup1.cif (21.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808040051/ci2724Isup2.hkl

e-65-00o10-Isup2.hkl (369.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES