Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Dec 3;65(Pt 1):o19. doi: 10.1107/S1600536808039238

rac-2-Bromo-3-eth­oxy-1,3-bis­(4-methoxy­phen­yl)propan-1-one

Hoong-Kun Fun a,*, Samuel Robinson Jebas a,, Jyothi N Rao b, B Kalluraya b
PMCID: PMC2967939  PMID: 21581644

Abstract

In the racemic (S,S/R,R) title compound, C19H21BrO4, the two benzene rings are almost coplanar to each other, forming a dihedral angle of 3.58 (10)°. The crystal packing is strengthened by inter­molecular Br—O [2.9800 (16) Å] short contacts, which link the molecules into infinite one-dimensional chains along [001].

Related literature

For the pharmacological applications of chalcones, see: Di Carlo et al. (1999); Dimmock et al. (1999); Go et al. (2005); Kalluraya et al. (1994); Rai et al. (2007). For bond-length data, see: Allen et al. (1987).graphic file with name e-65-00o19-scheme1.jpg

Experimental

Crystal data

  • C19H21BrO4

  • M r = 393.27

  • Monoclinic, Inline graphic

  • a = 12.2734 (10) Å

  • b = 15.3432 (12) Å

  • c = 10.4381 (8) Å

  • β = 114.399 (4)°

  • V = 1790.1 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.31 mm−1

  • T = 100.0 (1) K

  • 0.55 × 0.38 × 0.19 mm

Data collection

  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005) T min = 0.351, T max = 0.644

  • 22919 measured reflections

  • 5229 independent reflections

  • 4345 reflections with I > 2σ(I)

  • R int = 0.045

Refinement

  • R[F 2 > 2σ(F 2)] = 0.036

  • wR(F 2) = 0.103

  • S = 1.09

  • 5229 reflections

  • 219 parameters

  • H-atom parameters constrained

  • Δρmax = 1.15 e Å−3

  • Δρmin = −1.21 e Å−3

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808039238/dn2408sup1.cif

e-65-00o19-sup1.cif (20.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808039238/dn2408Isup2.hkl

e-65-00o19-Isup2.hkl (250.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

FHK and SRJ thank the Malaysian Government and Universiti Sains Malaysia for the Science Fund grant No. 305/PFIZIK/613312. SRJ thanks Universiti Sains Malaysia for a post–doctoral research fellowship. HKF also thank Universiti Sains Malaysia for the Research University Golden Goose grant No. 1001/PFIZIK/811012.

supplementary crystallographic information

Comment

Chalcones, one of the major classes of natural products with widespread distribution in fruits, vegetables, spices, tea and soy based foodstuff, have recently been the subject of great interest for their interesting pharmacological activities (Di Carlo et al., 1999). Chalcones and its derivatives have been reported to possess many useful properties including anti-inflammatory, antimicrobial, antifungal, antioxidant, cytotoxic, antitumor and anticancer activities (Dimmock et al., 1999; Go et al., 2005). Monobromo chalcones are used in the formation of many heterocyclic compounds having multiple applications (Kalluraya et al., 1994; Rai et al., 2007). Due to these varied applications, we have synthesized a new α-bromo chalcone and report its crystal structure.

Bond lengths and angles in (I) (Fig. 1) are found to have normal values (Allen et al., 1987). There are two chiral centres C7 and C8 in the molecular structure therefore the centrosymmetic crystal is a racemate. The dihedral angle formed by the phenyl (C1—C6; C10—C15) rings is 3.58 (10)°, indicating that they are almost coplanar to each other.

The crystal packing is strengthened by intermolecular Br···Oi=2.9800 (16)Å [symmetry code: X,1/2-Y,-1/2+Z] short contact. In the crystal packing, the molecules are linked into infinite one-dimensional chains along the [001] direction (Fig 2).

Experimental

1,3-Di(p-anisyl)-2,3-dibromopropane (0.01 mol) when treated with ethanol(25 mL) at room temperature in presence of triethyl amine (0.02 mol) resulted in the formation of the title compound involving a nucleophilic substitution reaction.

Refinement

H atoms were positioned geometrically (C—H=0.93–0.98 Å) and refined using a riding model with, Uiso(H)=1.2Uequ(C) and 1.5Uequ(Cmethyl). A rotating group model was used for the methyl groups.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atom numbering scheme.

Fig. 2.

Fig. 2.

The crystal packing of the title compound, viewed down the b axis, showing the linking of the molecules by Br—O short contacts into an infinite one-dimensional chain along the [0 0 1]-direction.

Crystal data

C19H21BrO4 F(000) = 808
Mr = 393.27 Dx = 1.459 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 9847 reflections
a = 12.2734 (10) Å θ = 2.3–35.9°
b = 15.3432 (12) Å µ = 2.32 mm1
c = 10.4381 (8) Å T = 100 K
β = 114.399 (4)° Block, colourless
V = 1790.1 (3) Å3 0.55 × 0.38 × 0.19 mm
Z = 4

Data collection

Bruker SMART APEXII CCD area-detector diffractometer 5229 independent reflections
Radiation source: fine-focus sealed tube 4345 reflections with I > 2σ(I)
graphite Rint = 0.046
φ and ω scans θmax = 30.0°, θmin = 1.8°
Absorption correction: multi-scan (SADABS; Bruker, 2005) h = −17→17
Tmin = 0.351, Tmax = 0.644 k = −21→19
22919 measured reflections l = −14→14

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.103 H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0572P)2 + 0.6245P] where P = (Fo2 + 2Fc2)/3
5229 reflections (Δ/σ)max = 0.001
219 parameters Δρmax = 1.15 e Å3
0 restraints Δρmin = −1.21 e Å3

Special details

Experimental. The data was collected with the Oxford Cyrosystem Cobra low-temperature attachment.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Br1 0.141463 (16) 0.307078 (13) 0.897910 (19) 0.01800 (8)
O1 −0.43693 (13) 0.28784 (11) 0.57932 (16) 0.0269 (3)
O2 0.59815 (14) 0.61005 (11) 1.23343 (17) 0.0280 (3)
O3 −0.01580 (12) 0.41258 (9) 1.14119 (14) 0.0178 (3)
O4 0.23341 (13) 0.32415 (10) 1.25655 (16) 0.0242 (3)
C1 −0.18733 (17) 0.26157 (13) 0.9281 (2) 0.0188 (4)
H1A −0.1636 0.2263 1.0075 0.023*
C2 −0.29744 (18) 0.24568 (14) 0.8159 (2) 0.0215 (4)
H2A −0.3469 0.2013 0.8213 0.026*
C3 −0.33187 (17) 0.29711 (13) 0.6964 (2) 0.0198 (4)
C4 −0.25693 (17) 0.36403 (14) 0.6904 (2) 0.0196 (4)
H4A −0.2796 0.3980 0.6097 0.024*
C5 −0.14917 (17) 0.38024 (13) 0.8036 (2) 0.0173 (4)
H5A −0.1010 0.4259 0.7992 0.021*
C6 −0.11204 (17) 0.32845 (13) 0.9248 (2) 0.0156 (4)
C7 0.00122 (16) 0.34564 (13) 1.05432 (19) 0.0153 (4)
H7A 0.0254 0.2917 1.1093 0.018*
C8 0.10736 (16) 0.38049 (13) 1.03024 (19) 0.0156 (4)
H8A 0.0916 0.4404 0.9950 0.019*
C9 0.22347 (17) 0.37698 (13) 1.16527 (19) 0.0168 (4)
C10 0.32249 (16) 0.43701 (12) 1.17987 (19) 0.0156 (4)
C11 0.31634 (18) 0.49576 (14) 1.0753 (2) 0.0207 (4)
H11A 0.2487 0.4969 0.9906 0.025*
C12 0.40986 (19) 0.55249 (15) 1.0964 (2) 0.0244 (4)
H12A 0.4046 0.5917 1.0261 0.029*
C13 0.51188 (18) 0.55101 (14) 1.2228 (2) 0.0214 (4)
C14 0.51982 (18) 0.49233 (14) 1.3275 (2) 0.0215 (4)
H14A 0.5877 0.4910 1.4119 0.026*
C15 0.42559 (17) 0.43567 (13) 1.3052 (2) 0.0194 (4)
H15A 0.4313 0.3961 1.3751 0.023*
C16 0.7050 (2) 0.61116 (17) 1.3607 (3) 0.0305 (5)
H16A 0.7593 0.6538 1.3532 0.046*
H16B 0.7420 0.5547 1.3762 0.046*
H16C 0.6855 0.6257 1.4382 0.046*
C17 −0.52119 (18) 0.22532 (17) 0.5863 (2) 0.0286 (5)
H17A −0.5905 0.2245 0.4983 0.043*
H17B −0.5444 0.2410 0.6605 0.043*
H17C −0.4850 0.1686 0.6046 0.043*
C18 −0.07984 (19) 0.38291 (14) 1.2207 (2) 0.0210 (4)
H18A −0.0499 0.3265 1.2623 0.025*
H18B −0.1643 0.3773 1.1602 0.025*
C19 −0.0613 (3) 0.44917 (18) 1.3337 (3) 0.0375 (6)
H19A −0.1025 0.4308 1.3898 0.056*
H19B −0.0923 0.5045 1.2913 0.056*
H19C 0.0226 0.4546 1.3923 0.056*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Br1 0.01397 (11) 0.02230 (13) 0.01772 (11) 0.00063 (7) 0.00655 (8) −0.00428 (7)
O1 0.0155 (7) 0.0366 (9) 0.0219 (8) −0.0060 (6) 0.0008 (6) −0.0019 (6)
O2 0.0209 (7) 0.0318 (9) 0.0297 (8) −0.0109 (7) 0.0088 (6) −0.0012 (7)
O3 0.0188 (6) 0.0194 (7) 0.0179 (6) −0.0001 (5) 0.0103 (5) −0.0021 (5)
O4 0.0190 (7) 0.0292 (8) 0.0205 (7) −0.0047 (6) 0.0043 (6) 0.0068 (6)
C1 0.0180 (9) 0.0186 (10) 0.0199 (9) −0.0004 (7) 0.0080 (7) 0.0015 (7)
C2 0.0171 (9) 0.0239 (11) 0.0244 (10) −0.0048 (8) 0.0096 (8) −0.0017 (8)
C3 0.0128 (8) 0.0250 (11) 0.0199 (9) −0.0007 (7) 0.0050 (7) −0.0041 (7)
C4 0.0169 (8) 0.0239 (10) 0.0172 (9) 0.0014 (8) 0.0061 (7) 0.0017 (7)
C5 0.0156 (8) 0.0177 (9) 0.0200 (9) −0.0007 (7) 0.0089 (7) −0.0003 (7)
C6 0.0136 (8) 0.0174 (9) 0.0162 (8) 0.0007 (7) 0.0066 (7) −0.0019 (7)
C7 0.0139 (8) 0.0160 (9) 0.0159 (8) 0.0002 (7) 0.0060 (7) −0.0007 (7)
C8 0.0141 (8) 0.0180 (9) 0.0150 (8) 0.0006 (7) 0.0062 (7) −0.0017 (7)
C9 0.0144 (8) 0.0195 (10) 0.0152 (8) −0.0004 (7) 0.0048 (7) −0.0014 (7)
C10 0.0141 (8) 0.0175 (9) 0.0160 (8) −0.0008 (7) 0.0069 (7) −0.0009 (7)
C11 0.0168 (9) 0.0266 (11) 0.0166 (9) −0.0029 (8) 0.0050 (7) 0.0020 (7)
C12 0.0217 (10) 0.0305 (12) 0.0212 (10) −0.0057 (9) 0.0090 (8) 0.0037 (8)
C13 0.0175 (9) 0.0241 (11) 0.0239 (10) −0.0060 (8) 0.0097 (8) −0.0050 (8)
C14 0.0164 (9) 0.0251 (11) 0.0183 (9) −0.0022 (8) 0.0024 (7) −0.0016 (7)
C15 0.0181 (9) 0.0211 (10) 0.0168 (9) −0.0009 (8) 0.0050 (7) 0.0012 (7)
C16 0.0180 (10) 0.0336 (13) 0.0356 (12) −0.0075 (9) 0.0067 (9) −0.0066 (10)
C17 0.0144 (9) 0.0372 (13) 0.0320 (12) −0.0058 (9) 0.0075 (9) −0.0100 (10)
C18 0.0234 (10) 0.0237 (10) 0.0197 (9) 0.0043 (8) 0.0126 (8) 0.0038 (7)
C19 0.0482 (15) 0.0422 (15) 0.0324 (13) −0.0034 (12) 0.0272 (12) −0.0100 (11)

Geometric parameters (Å, °)

Br1—C8 1.9569 (18) C9—C10 1.482 (3)
O1—C3 1.369 (2) C10—C11 1.393 (3)
O1—C17 1.434 (3) C10—C15 1.395 (3)
O2—C13 1.363 (2) C11—C12 1.384 (3)
O2—C16 1.431 (3) C11—H11A 0.9300
O3—C18 1.433 (2) C12—C13 1.394 (3)
O3—C7 1.441 (2) C12—H12A 0.9300
O4—C9 1.218 (2) C13—C14 1.388 (3)
C1—C6 1.391 (3) C14—C15 1.388 (3)
C1—C2 1.396 (3) C14—H14A 0.9300
C1—H1A 0.9300 C15—H15A 0.9300
C2—C3 1.387 (3) C16—H16A 0.9600
C2—H2A 0.9300 C16—H16B 0.9600
C3—C4 1.397 (3) C16—H16C 0.9600
C4—C5 1.384 (3) C17—H17A 0.9600
C4—H4A 0.9300 C17—H17B 0.9600
C5—C6 1.401 (3) C17—H17C 0.9600
C5—H5A 0.9300 C18—C19 1.502 (3)
C6—C7 1.509 (3) C18—H18A 0.9700
C7—C8 1.522 (3) C18—H18B 0.9700
C7—H7A 0.9800 C19—H19A 0.9600
C8—C9 1.536 (3) C19—H19B 0.9600
C8—H8A 0.9800 C19—H19C 0.9600
Br1···O4i 2.9800 (16)
C3—O1—C17 117.21 (17) C12—C11—C10 120.63 (19)
C13—O2—C16 117.85 (18) C12—C11—H11A 119.7
C18—O3—C7 113.25 (15) C10—C11—H11A 119.7
C6—C1—C2 122.07 (18) C11—C12—C13 120.13 (19)
C6—C1—H1A 119.0 C11—C12—H12A 119.9
C2—C1—H1A 119.0 C13—C12—H12A 119.9
C3—C2—C1 119.00 (19) O2—C13—C14 124.58 (19)
C3—C2—H2A 120.5 O2—C13—C12 115.48 (19)
C1—C2—H2A 120.5 C14—C13—C12 119.94 (19)
O1—C3—C2 124.66 (19) C15—C14—C13 119.47 (18)
O1—C3—C4 115.54 (18) C15—C14—H14A 120.3
C2—C3—C4 119.81 (18) C13—C14—H14A 120.3
C5—C4—C3 120.56 (18) C14—C15—C10 121.22 (18)
C5—C4—H4A 119.7 C14—C15—H15A 119.4
C3—C4—H4A 119.7 C10—C15—H15A 119.4
C4—C5—C6 120.57 (18) O2—C16—H16A 109.5
C4—C5—H5A 119.7 O2—C16—H16B 109.5
C6—C5—H5A 119.7 H16A—C16—H16B 109.5
C1—C6—C5 117.97 (17) O2—C16—H16C 109.5
C1—C6—C7 118.85 (17) H16A—C16—H16C 109.5
C5—C6—C7 123.05 (17) H16B—C16—H16C 109.5
O3—C7—C6 111.65 (15) O1—C17—H17A 109.5
O3—C7—C8 102.12 (14) O1—C17—H17B 109.5
C6—C7—C8 116.62 (15) H17A—C17—H17B 109.5
O3—C7—H7A 108.7 O1—C17—H17C 109.5
C6—C7—H7A 108.7 H17A—C17—H17C 109.5
C8—C7—H7A 108.7 H17B—C17—H17C 109.5
C7—C8—C9 111.65 (15) O3—C18—C19 107.37 (18)
C7—C8—Br1 111.20 (13) O3—C18—H18A 110.2
C9—C8—Br1 103.86 (12) C19—C18—H18A 110.2
C7—C8—H8A 110.0 O3—C18—H18B 110.2
C9—C8—H8A 110.0 C19—C18—H18B 110.2
Br1—C8—H8A 110.0 H18A—C18—H18B 108.5
O4—C9—C10 121.35 (17) C18—C19—H19A 109.5
O4—C9—C8 119.74 (18) C18—C19—H19B 109.5
C10—C9—C8 118.89 (16) H19A—C19—H19B 109.5
C11—C10—C15 118.61 (18) C18—C19—H19C 109.5
C11—C10—C9 123.01 (17) H19A—C19—H19C 109.5
C15—C10—C9 118.36 (17) H19B—C19—H19C 109.5
C6—C1—C2—C3 1.2 (3) C7—C8—C9—O4 25.2 (3)
C17—O1—C3—C2 5.5 (3) Br1—C8—C9—O4 −94.68 (19)
C17—O1—C3—C4 −174.36 (19) C7—C8—C9—C10 −156.22 (17)
C1—C2—C3—O1 179.59 (19) Br1—C8—C9—C10 83.87 (18)
C1—C2—C3—C4 −0.5 (3) O4—C9—C10—C11 177.2 (2)
O1—C3—C4—C5 179.04 (18) C8—C9—C10—C11 −1.3 (3)
C2—C3—C4—C5 −0.9 (3) O4—C9—C10—C15 −4.0 (3)
C3—C4—C5—C6 1.6 (3) C8—C9—C10—C15 177.47 (17)
C2—C1—C6—C5 −0.5 (3) C15—C10—C11—C12 −1.0 (3)
C2—C1—C6—C7 175.54 (18) C9—C10—C11—C12 177.7 (2)
C4—C5—C6—C1 −0.9 (3) C10—C11—C12—C13 0.4 (3)
C4—C5—C6—C7 −176.77 (18) C16—O2—C13—C14 0.7 (3)
C18—O3—C7—C6 76.10 (19) C16—O2—C13—C12 −179.8 (2)
C18—O3—C7—C8 −158.56 (15) C11—C12—C13—O2 −179.4 (2)
C1—C6—C7—O3 −94.3 (2) C11—C12—C13—C14 0.2 (3)
C5—C6—C7—O3 81.5 (2) O2—C13—C14—C15 179.4 (2)
C1—C6—C7—C8 148.80 (18) C12—C13—C14—C15 −0.1 (3)
C5—C6—C7—C8 −35.3 (3) C13—C14—C15—C10 −0.5 (3)
O3—C7—C8—C9 70.12 (18) C11—C10—C15—C14 1.1 (3)
C6—C7—C8—C9 −167.90 (16) C9—C10—C15—C14 −177.72 (19)
O3—C7—C8—Br1 −174.39 (11) C7—O3—C18—C19 164.38 (17)
C6—C7—C8—Br1 −52.41 (19)

Symmetry codes: (i) x, −y+1/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DN2408).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Bruker (2005). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Di Carlo, G., Mascolo, N., Izzo, A. A. & Capasso, F. (1999). Life Sci.65, 337–353. [DOI] [PubMed]
  4. Dimmock, J. R., Elias, D. W., Beazely, M. A. & Kandepu, N. M. (1999). Curr. Med. Chem.6, 1125–1149. [PubMed]
  5. Go, M. L., Wu, X. & Liu, X. L. (2005). Curr. Med. Chem.12, 483–499.
  6. Kalluraya, B., De Souza, A. & Holla, B. S. (1994). Indian J. Chem. Sect. B, 33, 1017–1022.
  7. Rai, N. S., Kalluraya, B. & Lingappa, B. (2007). Synth. Commun 37, 2267–2273.
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808039238/dn2408sup1.cif

e-65-00o19-sup1.cif (20.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808039238/dn2408Isup2.hkl

e-65-00o19-Isup2.hkl (250.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES