Skip to main content

PMC Search Update

PMC Beta search will replace the current PMC search the week of September 7, 2025. Try out PMC Beta search now and give us your feedback. Learn more

Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Dec 10;65(Pt 1):o44–o45. doi: 10.1107/S1600536808040646

2,4-Difluoro­phenyl­boronic acid

Patricia Rodríguez-Cuamatzi a, Hugo Tlahuext b, Herbert Höpfl b,*
PMCID: PMC2967960  PMID: 21581686

Abstract

The mol­ecular structure of the title compound, C6H5BF2O2, is essentially planar (mean deviation = 0.019 Å), indicating electronic delocalization between the dihydroxy­boryl group and the aromatic ring. In the crystal structure, inversion dimers linked by two O—H⋯O hydrogen bonds arise. An intra­molecular O—H⋯F hydrogen bond reinforces the conformation and the same H atom is also involved in an inter­molecular O—H⋯F link, leading to mol­ecular sheets in the crystal.

Related literature

For general backround to boronic acids, see: Hall (2005); Höpfl (2002); Fujita et al. (2008); Soloway et al. (1998). For hydrogen-bond motifs, see: Bernstein et al. (1995); Desiraju (2002). For related structures, see: Wu et al. (2006); Bradley et al. (1996); Horton et al. (2004). For crystal engineering, see: Fournier et al. (2003); Rodríguez-Cuamatzi et al. (2004, 2005).graphic file with name e-65-00o44-scheme1.jpg

Experimental

Crystal data

  • C6H5BF2O2

  • M r = 157.91

  • Monoclinic, Inline graphic

  • a = 3.7617 (11) Å

  • b = 12.347 (4) Å

  • c = 14.620 (4) Å

  • β = 95.450 (5)°

  • V = 676.0 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.15 mm−1

  • T = 293 (2) K

  • 0.37 × 0.35 × 0.22 mm

Data collection

  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.947, T max = 0.968

  • 3196 measured reflections

  • 1190 independent reflections

  • 1012 reflections with I > 2σ(I)

  • R int = 0.028

Refinement

  • R[F 2 > 2σ(F 2)] = 0.056

  • wR(F 2) = 0.127

  • S = 1.15

  • 1190 reflections

  • 106 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.14 e Å−3

  • Δρmin = −0.18 e Å−3

Data collection: SMART (Bruker, 2000); cell refinement: SAINT-Plus-NT (Bruker, 2001); data reduction: SAINT-Plus-NT; program(s) used to solve structure: SHELXTL-NT (Sheldrick, 2008); program(s) used to refine structure: SHELXTL-NT; molecular graphics: CAMERON (Watkin et al., 1996); software used to prepare material for publication: PLATON (Spek, 2003) and publCIF (Westrip, 2009).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808040646/hb2865sup1.cif

e-65-00o44-sup1.cif (14.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808040646/hb2865Isup2.hkl

e-65-00o44-Isup2.hkl (58.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯F1 0.841 (15) 2.16 (3) 2.799 (3) 133 (2)
O1—H1⋯F2i 0.841 (15) 2.39 (2) 3.086 (3) 140 (3)
O2—H2⋯O1ii 0.841 (19) 1.97 (2) 2.809 (3) 174 (3)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

This work was supported by Consejo Nacional de Ciencia y Tecnología (CIAM-59213 for HH).

supplementary crystallographic information

Comment

Boronic acids, RB(OH)2 with R = alkyl and aryl, have applications in organic synthesis (Hall, 2005), host–guest chemistry (Höpfl, 2002), the molecular recognition of biochemically active molecules (Fujita et al., 2008) and in medicine as antibiotics, inhibitors and for the treatment of tumors (Soloway et al., 1998). Similar to carboxylic acids they are capable to form hydrogen-bonded dimeric units and, therefore, boronic acids have been used recently as new building blocks in crystal engineering (Fournier et al., 2003; Rodríguez-Cuamatzi et al., 2004; Rodríguez-Cuamatzi et al., 2005). Previously, the structures of 3-fluorophenylboronic acid (Wu et al., 2006), 2,6-difluoroboronic acid (Bradley et al., 1996) and pentafluoroboronic acid (Horton et al., 2004) had been reported. We now present the crystal structure of (I).

The molecular structure is essentially planar, O1—B1—C1—C2 = 4.4 (4)°, indicating that there is a π···π interaction between the dihydroxyboryl group and the aromatic ring, to which it is attached (Fig. 1). This interaction is also evidenced by the B—C bond length of 1.566 (3) Å, which is significantly shorter than that observed in boronates containing tetra-coordinate boron atoms (Höpfl, 2002). The crystal structure is stabilized by strong O2—H2···O1 hydrogen-bonding interactions, forming R22(8) motifs (Bernstein et al., 1995), as well as, O1—H1···F1 and O1—H1···F2 bifurcated hydrogen bonds (Fig. 2; Table 1) (Desiraju, 2002). Due to these interactions each boronic acid homodimer is linked to two neighboring homodimeric units, thus creating a two-dimensional hydrogen-bonded network, in which fluorine is therefore an essential structural component.

Experimental

2,4-Difluorophenylboronic acid was purchased from Aldrich and crystallized from water to yield colourless blocks of (I).

Refinement

The aromatic H atoms were positioned geometrically (C—H = 0.93Å) and refined as riding with Uiso(H) = 1.2Ueq(C). The O—H hydrogen atoms were localized in a difference map and their coordinates were refined with O—H = 0.84+/0.01Å and Uiso(H) = 1.5 Ueq(O).

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I) with displacement ellipsoids drawn at the 30% probability level and H atoms shown as small spheres of arbitrary radius.

Fig. 2.

Fig. 2.

View of the packing arrangement of the two-dimensional network of (I)(I).

Crystal data

C6H5BF2O2 F(000) = 320
Mr = 157.91 Dx = 1.552 Mg m3
Monoclinic, P21/n Melting point = 521–522 K
Hall symbol: -P 2yn Mo Kα radiation, λ = 0.71073 Å
a = 3.7617 (11) Å Cell parameters from 1052 reflections
b = 12.347 (4) Å θ = 2.3–26.2°
c = 14.620 (4) Å µ = 0.15 mm1
β = 95.450 (5)° T = 293 K
V = 676.0 (3) Å3 Block, colorless
Z = 4 0.37 × 0.35 × 0.22 mm

Data collection

Bruker SMART APEX CCD area-detector diffractometer 1190 independent reflections
Radiation source: fine-focus sealed tube 1012 reflections with I > 2σ(I)
graphite Rint = 0.028
Detector resolution: 8.3 pixels mm-1 θmax = 25.0°, θmin = 2.2°
φ and ω scans h = −3→4
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) k = −14→12
Tmin = 0.947, Tmax = 0.968 l = −17→17
3196 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.056 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.127 H atoms treated by a mixture of independent and constrained refinement
S = 1.15 w = 1/[σ2(Fo2) + (0.0442P)2 + 0.2673P] where P = (Fo2 + 2Fc2)/3
1190 reflections (Δ/σ)max < 0.001
106 parameters Δρmax = 0.14 e Å3
2 restraints Δρmin = −0.18 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
B1 0.7704 (8) 0.4548 (2) 0.62567 (18) 0.0452 (7)
O1 0.6825 (6) 0.38623 (15) 0.55419 (13) 0.0695 (6)
H1 0.748 (9) 0.3215 (9) 0.562 (2) 0.104*
O2 0.6880 (6) 0.55977 (14) 0.61557 (12) 0.0630 (6)
H2 0.593 (8) 0.577 (3) 0.5632 (10) 0.094*
F1 1.0385 (5) 0.23728 (11) 0.67473 (11) 0.0768 (6)
F2 1.4329 (5) 0.33016 (14) 0.97634 (10) 0.0822 (6)
C1 0.9591 (6) 0.41789 (18) 0.72069 (15) 0.0424 (6)
C2 1.0796 (7) 0.31430 (18) 0.74175 (16) 0.0470 (6)
C3 1.2380 (7) 0.2819 (2) 0.82553 (17) 0.0539 (7)
H3 1.3138 0.2109 0.8363 0.065*
C4 1.2785 (7) 0.3593 (2) 0.89223 (17) 0.0547 (7)
C5 1.1696 (8) 0.4640 (2) 0.87828 (17) 0.0586 (7)
H5 1.2013 0.5150 0.9251 0.070*
C6 1.0119 (7) 0.49169 (19) 0.79282 (16) 0.0498 (6)
H6 0.9371 0.5628 0.7827 0.060*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
B1 0.0451 (16) 0.0425 (15) 0.0471 (16) −0.0009 (12) −0.0005 (12) 0.0033 (12)
O1 0.1000 (17) 0.0484 (11) 0.0540 (11) 0.0158 (10) −0.0241 (10) −0.0009 (9)
O2 0.0850 (15) 0.0441 (10) 0.0552 (11) 0.0087 (9) −0.0172 (10) 0.0048 (8)
F1 0.1192 (15) 0.0456 (9) 0.0602 (10) 0.0151 (9) −0.0187 (9) −0.0046 (7)
F2 0.1070 (14) 0.0804 (12) 0.0527 (10) −0.0120 (10) −0.0262 (9) 0.0181 (8)
C1 0.0383 (13) 0.0412 (13) 0.0473 (13) −0.0039 (10) 0.0019 (10) 0.0048 (10)
C2 0.0523 (16) 0.0410 (13) 0.0467 (13) −0.0017 (11) 0.0001 (11) 0.0008 (10)
C3 0.0584 (17) 0.0449 (14) 0.0564 (15) 0.0002 (12) −0.0053 (13) 0.0124 (12)
C4 0.0579 (17) 0.0613 (17) 0.0426 (13) −0.0099 (13) −0.0075 (12) 0.0135 (12)
C5 0.0696 (19) 0.0552 (16) 0.0489 (14) −0.0109 (13) −0.0058 (13) −0.0020 (12)
C6 0.0559 (16) 0.0399 (13) 0.0522 (14) −0.0011 (11) −0.0011 (12) 0.0029 (11)

Geometric parameters (Å, °)

B1—O2 1.338 (3) C1—C6 1.394 (3)
B1—O1 1.361 (3) C2—C3 1.370 (3)
B1—C1 1.566 (3) C3—C4 1.363 (4)
O1—H1 0.841 (15) C3—H3 0.93
O2—H2 0.841 (15) C4—C5 1.366 (4)
F1—C2 1.364 (3) C5—C6 1.374 (3)
F2—C4 1.358 (3) C5—H5 0.93
C1—C2 1.382 (3) C6—H6 0.93
O2—B1—O1 118.7 (2) C4—C3—H3 121.8
O2—B1—C1 117.4 (2) C2—C3—H3 121.8
O1—B1—C1 123.8 (2) F2—C4—C3 118.1 (2)
B1—O1—H1 116 (2) F2—C4—C5 118.8 (2)
B1—O2—H2 115 (2) C3—C4—C5 123.0 (2)
C2—C1—C6 114.6 (2) C4—C5—C6 117.9 (2)
C2—C1—B1 125.3 (2) C4—C5—H5 121.0
C6—C1—B1 120.1 (2) C6—C5—H5 121.0
F1—C2—C3 116.7 (2) C5—C6—C1 122.9 (2)
F1—C2—C1 118.2 (2) C5—C6—H6 118.5
C3—C2—C1 125.1 (2) C1—C6—H6 118.5
C4—C3—C2 116.4 (2)
O2—B1—C1—C2 −176.5 (2) C1—C2—C3—C4 −0.3 (4)
O1—B1—C1—C2 4.5 (4) C2—C3—C4—F2 179.7 (2)
O2—B1—C1—C6 4.6 (4) C2—C3—C4—C5 0.0 (4)
O1—B1—C1—C6 −174.5 (2) F2—C4—C5—C6 −179.6 (2)
C6—C1—C2—F1 −179.9 (2) C3—C4—C5—C6 0.1 (4)
B1—C1—C2—F1 1.1 (4) C4—C5—C6—C1 0.0 (4)
C6—C1—C2—C3 0.4 (4) C2—C1—C6—C5 −0.3 (4)
B1—C1—C2—C3 −178.6 (2) B1—C1—C6—C5 178.8 (2)
F1—C2—C3—C4 180.0 (2)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O1—H1···F1 0.84 (2) 2.16 (3) 2.799 (3) 133 (2)
O1—H1···F2i 0.84 (2) 2.39 (2) 3.086 (3) 140 (3)
O2—H2···O1ii 0.84 (2) 1.97 (2) 2.809 (3) 174 (3)

Symmetry codes: (i) x−1/2, −y+1/2, z−1/2; (ii) −x+1, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB2865).

References

  1. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  2. Bradley, D. C., Harding, I. S., Keefe, A. D., Motevalli, M. & Zheng, D. H. (1996). J. Chem. Soc. Dalton Trans. pp. 3931–3936.
  3. Bruker (2000). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Bruker (2001). SAINT-Plus NT Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Desiraju, G. R. (2002). Acc. Chem. Res.35, 565–573. [DOI] [PubMed]
  6. Fournier, J.-H., Maris, T., Wuest, J. D., Guo, W. & Galoppini, E. (2003). J. Am. Chem. Soc.125, 1002–1006. [DOI] [PubMed]
  7. Fujita, N., Shinkai, S. & James, T. D. (2008). Chem. Asian J.3, 1076–1091. [DOI] [PubMed]
  8. Hall, D. G. (2005). Boronic Acids: Preparation, Applications in Organic Synthesis and Medicine Weinheim: Wiley-VCH.
  9. Höpfl, H. (2002). Structure and Bonding, edited by H. W. Roesky & D. A. Atwood, Vol. 103, pp. 1-56. Berlin: Springer Verlag.
  10. Horton, P. N., Hursthouse, M. B., Beckett, M. A. & Rugen-Hankey, M. P. (2004). Acta Cryst. E60, o2204–o2206.
  11. Rodríguez-Cuamatzi, P., Arillo-Flores, O. I., Bernal-Uruchurtu, M. I. & Höpfl, H. (2005). Cryst. Growth Des.5, 167–175.
  12. Rodríguez-Cuamatzi, P., Vargas-Díaz, G. & Höpfl, H. (2004). Angew. Chem. Int. Ed.43, 3041–3044. [DOI] [PubMed]
  13. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  14. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  15. Soloway, A. H., Tjarks, W., Barnum, B. A., Rong, R.-A., Barth, R. F., Codogni, I. M. & Wilson, J. G. (1998). Chem. Rev.98, 1515–1562. [DOI] [PubMed]
  16. Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
  17. Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON Chemical Crystallography Laboratory Oxford, Oxford, England.
  18. Westrip, S. P. (2009). publCIF In preparation.
  19. Wu, Y.-M., Dong, C.-C., Liu, S., Zhu, H.-J. & Wu, Y.-Z. (2006). Acta Cryst. E62, o4236–o4237.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808040646/hb2865sup1.cif

e-65-00o44-sup1.cif (14.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808040646/hb2865Isup2.hkl

e-65-00o44-Isup2.hkl (58.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES