Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Dec 10;65(Pt 1):o54. doi: 10.1107/S1600536808040920

2-(3-Methyl-2-nitro­phen­yl)-4,5-dihydro-1,3-oxazole

Dongwei Lei a, Huibin Yang b, Bin Li b, Zhuo Kang b,*
PMCID: PMC2967968  PMID: 21581695

Abstract

In the title compound, C10H10N2O3, an inter­mediate in the synthesis of anthranilamide insecticides, all the non-H atoms except the nitro-group O atom lie on a crystallographic mirror plane. The H atoms of the methyl group are disordered over two sets of sites with equal occupancies. In the crystal structure, C—H⋯N links lead to chains of mol­ecules propagating in [100].

Related literature

For background to anthranilamide compounds, a new class of inseticides, see: Lahm et al. (2003, 2005).graphic file with name e-65-00o54-scheme1.jpg

Experimental

Crystal data

  • C10H10N2O3

  • M r = 206.20

  • Monoclinic, Inline graphic

  • a = 7.7767 (10) Å

  • b = 7.3370 (10) Å

  • c = 8.6468 (12) Å

  • β = 99.414 (2)°

  • V = 486.72 (11) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 296 (2) K

  • 0.24 × 0.22 × 0.18 mm

Data collection

  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001) T min = 0.834, T max = 1.000 (expected range = 0.818–0.981)

  • 2462 measured reflections

  • 937 independent reflections

  • 842 reflections with I > 2σ(I)

  • R int = 0.011

Refinement

  • R[F 2 > 2σ(F 2)] = 0.037

  • wR(F 2) = 0.110

  • S = 1.07

  • 937 reflections

  • 90 parameters

  • H-atom parameters constrained

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.15 e Å−3

Data collection: SMART (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808040920/hb2868sup1.cif

e-65-00o54-sup1.cif (15.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808040920/hb2868Isup2.hkl

e-65-00o54-Isup2.hkl (46.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4⋯N1i 0.93 2.60 3.508 (3) 167

Symmetry code: (i) Inline graphic.

supplementary crystallographic information

Comment

Anthranilamide compounds as a new class of inseticides are characterized by their high levels of insecticidal activity, no-cross resistance to existing insecticides, safety to off-target animal and low toxicity to mammals (Lahm et al. 2003, 2005)

The title compound (I) as an intermediate for preparing Chlorantraniliprole analogs plays an important role in identifying the configuration of two possible products.

In the molecular structure of (I), (Fig. 1) all the non-hydrogen atoms except the nitro-group O atom lie on a crystallographic mirror plane. In the crystal, C—H···N links lead to chains of molecules propagating in [100].

Experimental

2-Bromoethanamine hydrobromide (10.25 g, 50 mmol) and 3-methyl-2-nitrobenzoyl chloride (9.98 g, 50 mmol) were added into dichloromethane (200 ml), then triethylamine (16.70 g, 165 mmol) was added. The mixture was heated to reflux for 14 h and cooled down to room temperature, washed with water and brine, dried by anhydrous sulfate magnesium, then evaporated to give the title compound as a white solid. The product was dissolved in dichloromethane and left to stand at room temperature and colourless blocks of (I) were obtained.

Anal. Calcd for C10H10N2O3: C, 58.25; H, 4.89; N, 13.59; O, 23.28. Found: C, 58.20; H, 4.90; N, 13.61; O, 23.25 1H NMR(CDCl3): 2.35 (s, 3H, CH3), 4.06 (t, J=9.8 Hz, 2H, CH2), 4.40 (t, J=9.6 Hz, 2H, CH2), 7.41–7.43(m, 2H), 7.78–7.81 (m, 1H).

Refinement

Although all H atoms were visible in difference maps, they were finally placed in geometrically calculated positions, with C—H distances in the range 0.93–0.96 Å, and included in the final refinement in the riding model approximation, with Uiso(H) = 1.2Ueq(C) for aromatic and Uiso(H) = 1.5Ueq(C) for methyl H atoms.

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I), with 30% probability displacement ellipsoids for the non-hydrogen atoms. Symmetry code: A x, 1/2–y, z.

Crystal data

C10H10N2O3 F(000) = 216
Mr = 206.20 Dx = 1.407 Mg m3
Monoclinic, P21/m Mo Kα radiation, λ = 0.71073 Å
a = 7.7767 (10) Å Cell parameters from 1713 reflections
b = 7.337 (1) Å θ = 2.7–27.9°
c = 8.6468 (12) Å µ = 0.11 mm1
β = 99.414 (2)° T = 296 K
V = 486.72 (11) Å3 BLOCK, colourless
Z = 2 0.24 × 0.22 × 0.18 mm

Data collection

Bruker SMART CCD diffractometer 937 independent reflections
Radiation source: fine-focus sealed tube 842 reflections with I > 2σ(I)
graphite Rint = 0.011
ω scans θmax = 25.0°, θmin = 2.4°
Absorption correction: multi-scan (SADABS; Bruker, 2001) h = −9→9
Tmin = 0.834, Tmax = 1.000 k = −6→8
2462 measured reflections l = −10→9

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.110 H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0583P)2 + 0.1052P] where P = (Fo2 + 2Fc2)/3
937 reflections (Δ/σ)max < 0.001
90 parameters Δρmax = 0.17 e Å3
0 restraints Δρmin = −0.15 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
O1 0.2190 (2) 0.2500 1.12373 (17) 0.0794 (6)
O2 0.33918 (12) 0.10351 (17) 0.61731 (13) 0.0628 (4)
N1 0.4057 (2) 0.2500 0.95534 (19) 0.0617 (6)
N2 0.27535 (19) 0.2500 0.64083 (17) 0.0428 (4)
C1 −0.0249 (3) 0.2500 0.4054 (2) 0.0520 (5)
H1A 0.0705 0.3268 0.3893 0.078* 0.50
H1B −0.1309 0.2952 0.3449 0.078* 0.50
H1C −0.0041 0.1280 0.3728 0.078* 0.50
C2 −0.0410 (2) 0.2500 0.5759 (2) 0.0430 (5)
C3 −0.2030 (3) 0.2500 0.6245 (3) 0.0533 (5)
H3 −0.3034 0.2500 0.5495 0.064*
C4 −0.2181 (3) 0.2500 0.7801 (3) 0.0630 (6)
H4 −0.3281 0.2500 0.8092 0.076*
C5 −0.0709 (3) 0.2500 0.8946 (3) 0.0589 (6)
H5 −0.0828 0.2500 0.9998 0.071*
C6 0.0946 (2) 0.2500 0.8531 (2) 0.0434 (5)
C7 0.1040 (2) 0.2500 0.6938 (2) 0.0381 (4)
C8 0.2508 (2) 0.2500 0.9762 (2) 0.0428 (5)
C9 0.3878 (3) 0.2500 1.2242 (3) 0.0671 (7)
H9 0.4021 0.1424 1.2902 0.081*
C10 0.5156 (3) 0.2500 1.1111 (2) 0.0580 (6)
H10 0.5890 0.3576 1.1251 0.070*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0487 (9) 0.1510 (17) 0.0384 (8) 0.000 0.0066 (7) 0.000
O2 0.0475 (6) 0.0714 (8) 0.0701 (8) 0.0137 (5) 0.0117 (5) −0.0128 (5)
N1 0.0353 (9) 0.1100 (16) 0.0376 (9) 0.000 −0.0005 (7) 0.000
N2 0.0323 (8) 0.0582 (10) 0.0363 (8) 0.000 0.0013 (6) 0.000
C1 0.0451 (11) 0.0637 (13) 0.0437 (11) 0.000 −0.0033 (8) 0.000
C2 0.0358 (10) 0.0443 (10) 0.0463 (10) 0.000 −0.0010 (8) 0.000
C3 0.0316 (9) 0.0658 (13) 0.0594 (13) 0.000 −0.0020 (8) 0.000
C4 0.0322 (10) 0.0932 (17) 0.0649 (14) 0.000 0.0114 (9) 0.000
C5 0.0397 (11) 0.0885 (16) 0.0505 (12) 0.000 0.0130 (9) 0.000
C6 0.0347 (10) 0.0516 (11) 0.0434 (10) 0.000 0.0046 (8) 0.000
C7 0.0290 (8) 0.0422 (10) 0.0428 (10) 0.000 0.0047 (7) 0.000
C8 0.0408 (10) 0.0521 (11) 0.0352 (9) 0.000 0.0057 (7) 0.000
C9 0.0550 (13) 0.1013 (19) 0.0413 (11) 0.000 −0.0030 (10) 0.000
C10 0.0445 (11) 0.0834 (16) 0.0418 (11) 0.000 −0.0058 (8) 0.000

Geometric parameters (Å, °)

O1—C8 1.339 (2) C3—C4 1.370 (3)
O1—C9 1.451 (3) C3—H3 0.9300
O2—N2 1.2149 (13) C4—C5 1.385 (3)
N1—C8 1.247 (2) C4—H4 0.9300
N1—C10 1.472 (2) C5—C6 1.391 (3)
N2—O2i 1.2149 (13) C5—H5 0.9300
N2—C7 1.478 (2) C6—C7 1.391 (3)
C1—C2 1.501 (3) C6—C8 1.478 (3)
C1—H1A 0.9600 C9—C10 1.504 (3)
C1—H1B 0.9600 C9—H9 0.9700
C1—H1C 0.9600 C9—H9i 0.9700
C2—C7 1.391 (2) C10—H10 0.9700
C2—C3 1.391 (3) C10—H10i 0.9700
C8—O1—C9 106.31 (16) C6—C5—H5 119.8
C8—N1—C10 107.34 (17) C7—C6—C5 117.07 (18)
O2i—N2—O2 124.43 (16) C7—C6—C8 122.89 (17)
O2i—N2—C7 117.75 (8) C5—C6—C8 120.04 (18)
O2—N2—C7 117.75 (8) C2—C7—C6 123.93 (17)
C2—C1—H1A 109.5 C2—C7—N2 115.90 (16)
C2—C1—H1B 109.5 C6—C7—N2 120.18 (15)
H1A—C1—H1B 109.5 N1—C8—O1 118.10 (17)
C2—C1—H1C 109.5 N1—C8—C6 126.55 (17)
H1A—C1—H1C 109.5 O1—C8—C6 115.35 (16)
H1B—C1—H1C 109.5 O1—C9—C10 103.87 (16)
C7—C2—C3 116.38 (18) O1—C9—H9 111.0
C7—C2—C1 122.16 (17) C10—C9—H9i 111.0
C3—C2—C1 121.46 (17) O1—C9—H9i 111.0
C4—C3—C2 121.60 (18) C10—C9—H9i 111.0
C4—C3—H3 119.2 H9—C9—H9i 109.0
C2—C3—H3 119.2 N1—C10—C9 104.38 (16)
C3—C4—C5 120.52 (19) N1—C10—H10 110.9
C3—C4—H4 119.7 C9—C10—H10 110.9
C5—C4—H4 119.7 N1—C10—H10i 110.9
C4—C5—C6 120.5 (2) C9—C10—H10i 110.9
C4—C5—H5 119.8 H10—C10—H10i 108.9
C7—C2—C3—C4 0.0 O2—N2—C7—C2 −88.46 (13)
C1—C2—C3—C4 180.0 O2i—N2—C7—C6 −91.54 (13)
C2—C3—C4—C5 0.0 O2—N2—C7—C6 91.54 (13)
C3—C4—C5—C6 0.0 C10—N1—C8—O1 0.0
C4—C5—C6—C7 0.0 C10—N1—C8—C6 180.0
C4—C5—C6—C8 180.0 C9—O1—C8—N1 0.0
C3—C2—C7—C6 0.0 C9—O1—C8—C6 180.0
C1—C2—C7—C6 180.0 C7—C6—C8—N1 0.0
C3—C2—C7—N2 180.0 C5—C6—C8—N1 180.0
C1—C2—C7—N2 0.0 C7—C6—C8—O1 180.0
C5—C6—C7—C2 0.0 C5—C6—C8—O1 0.0
C8—C6—C7—C2 180.0 C8—O1—C9—C10 0.0
C5—C6—C7—N2 180.0 C8—N1—C10—C9 0.0
C8—C6—C7—N2 0.0 O1—C9—C10—N1 0.0
O2i—N2—C7—C2 88.46 (13)

Symmetry codes: (i) x, −y+1/2, z.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C4—H4···N1ii 0.93 2.60 3.508 (3) 167

Symmetry codes: (ii) x−1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB2868).

References

  1. Bruker (2005). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Lahm, G. P., Selby, T. P., Freudenberger, J. H., Stevenson, T. M., Myers, B. J., Seburyamo, G., Smith, B. K., Flexner, L., Clark, C. E. & Cordova, D. (2005). Bioorg. Med. Chem. Lett.15, 4898–4906. [DOI] [PubMed]
  3. Lahm, G. P., Selby, T. P. & Stevenson, T. M. (2003). International Patent WO 03/015 519.
  4. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808040920/hb2868sup1.cif

e-65-00o54-sup1.cif (15.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808040920/hb2868Isup2.hkl

e-65-00o54-Isup2.hkl (46.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES