Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Dec 10;65(Pt 1):o57. doi: 10.1107/S1600536808040853

4-[(E)-(5-Chloro-2-hydroxy­benzyl­idene)amino]benzene­sulfonamide

Zahid H Chohan a, Hazoor A Shad a, M Nawaz Tahir b,*
PMCID: PMC2967971  PMID: 21581698

Abstract

In the mol­ecule of title compound, C13H11ClN2O3S, the aromatic rings are oriented at a dihedral angle of 12.27 (3)°. An intra­molecular O—H⋯N hydrogen bond results in the formation of a planar (mean deviation 0.0083 Å) six-membered ring, which is nearly coplanar with the adjacent ring at a dihedral angle of 2.36 (13)°. In the sulfonamide group, the S atom is 0.457 (3) Å from the plane through the O and N atoms. In the crystal structure, inter­molecular N—H⋯O hydrogen bonds link the mol­ecules.

Related literature

For general background, see: Chohan (2008); Chohan & Shad (2008); Chohan & Supuran (2008); Nishimori et al. (2005). For related structures, see: Chohan et al. (2008a ,b ); Shad et al. (2008); Gelbrich et al. (2008). For bond-length data, see: Allen et al. (1987).graphic file with name e-65-00o57-scheme1.jpg

Experimental

Crystal data

  • C13H11ClN2O3S

  • M r = 310.76

  • Monoclinic, Inline graphic

  • a = 6.1936 (9) Å

  • b = 4.6002 (7) Å

  • c = 23.252 (3) Å

  • β = 95.699 (7)°

  • V = 659.22 (16) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.46 mm−1

  • T = 296 (2) K

  • 0.25 × 0.18 × 0.15 mm

Data collection

  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005) T min = 0.904, T max = 0.935

  • 7850 measured reflections

  • 3172 independent reflections

  • 1842 reflections with I > 2σ(I)

  • R int = 0.053

Refinement

  • R[F 2 > 2σ(F 2)] = 0.056

  • wR(F 2) = 0.132

  • S = 1.02

  • 3172 reflections

  • 193 parameters

  • 4 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.36 e Å−3

  • Absolute structure: Flack (1983), 1125 Friedel pairs

  • Flack parameter: 0.09 (13)

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2003); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808040853/hk2593sup1.cif

e-65-00o57-sup1.cif (17.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808040853/hk2593Isup2.hkl

e-65-00o57-Isup2.hkl (53.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.82 1.87 2.603 (5) 148
N2—H21⋯O3i 0.87 (4) 2.16 (4) 2.986 (6) 160 (5)

Symmetry code: (i) Inline graphic.

Acknowledgments

The authors acknowledge the Higher Education Commission, Islamabad, Pakistan, for funding the purchase of the diffractometer at GCU, Lahore.

supplementary crystallographic information

Comment

Sulfonamides have gained much attention due to their extensive use in medicine. Many novel sulfonamide derived compounds have been synthesized and reported (Chohan, 2008; Chohan & Shad, 2008; Chohan & Supuran, 2008; Nishimori et al., 2005) that are expected to attack the selective targets. This approach is supportive in controlling undesirable effects and producing distinctive pharmacological and clinical responses. In continuation to synthesize Schiff base ligands of 5-chlorosalicylaldehyde with different sulfonamides (Chohan et al., 2008a, 2008b; Shad et al., 2008), we have synthesized the title compound having the sulfanilamide, which is also a member of sulfonamides, and reported herein its crystal structure. The crystal structures of the individual moieties of δ-sulfanilamide have also been reported (Gelbrich et al., 2008) .

In the molecule of title compound (Fig 1), the bond lengths (Allen et al., 1987) and angles are within normal ranges. Rings A (C1-C6) and B (C8-C13) are, of course, planar, and the dihedral angle between them is A/B = 12.27 (3)°. The intramolecular O-H···N hydrogen bond (Table 1) results in the formation of a planar six-membered ring C (O1/N1/C1/C2/C7/H1), which is oriented with respect to rings A and B at dihedral angles of A/C = 2.36 (13)° and B/C = 13.22 (13)°. So, rings A and C are also nearly coplanar. In the sulfonamide group, the S1 atom is 0.457 (3) Å away from the plane of (O2/O3/N2).

In the crystal structure, intermolecular N-H···O hydrogen bonds (Table 1) link the molecules (Fig. 2), in which they may be effective in the stabilization of the structure.

Experimental

For the preparation of the title compound, sulfanilamide (344.4 mg, 2 mmol) in ethanol (20 ml) was mixed with 5-chlorosalicylaldehyde (313.1 mg, 2 mmol) in ethanol (10 ml). The resultant mixture was refluxed for 3 h by monitoring through TLC. During refluxing the solution turned from colorless to bright orange. After completion of reaction, it was cooled to room temperature, filtered and volume reduced to about one-third using rotary evaporator. It was then allowed to stand for 6 d at room temperature. After which, a crystallized product was formed that was filtered, washed with ethanol (2x5 ml), dried and recrystallized in a mixture of methanol/ethanol (1:1) to afford the orange crystals of the title compound (m.p. 469-471 K).

Refinement

H7 (for CH) and H21, H22 (for NH2) atoms were located in difference syntheses and refined isotropically [C-H = 0.97 (4) Å, Uiso(H) = 0.040 (13) Å2; N-H = 0.87 (4) and 0.87 (5) Å; Uiso(H) = 0.07 (2) and 0.08 (2) Å2]. The remaining H atoms were positioned geometrically, with O-H = 0.82 Å (for OH) and C-H = 0.93 Å for aromatic H and constrained to ride on their parent atoms with Uiso(H) = xUeq(C,O), where x = 1.5 for OH H and x = 1.2 for aromatic H atoms.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen bond is shown as dashed line.

Fig. 2.

Fig. 2.

A partial packing diagram of the title compound. Hydrogen bonds are shown as dashed lines.

Crystal data

C13H11ClN2O3S F(000) = 320
Mr = 310.76 Dx = 1.566 Mg m3
Monoclinic, P21 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2yb Cell parameters from 1848 reflections
a = 6.1936 (9) Å θ = 0.9–26.4°
b = 4.6002 (7) Å µ = 0.46 mm1
c = 23.252 (3) Å T = 296 K
β = 95.699 (7)° Prism, orange
V = 659.22 (16) Å3 0.25 × 0.18 × 0.15 mm
Z = 2

Data collection

Bruker Kappa APEXII CCD diffractometer 3172 independent reflections
Radiation source: fine-focus sealed tube 1842 reflections with I > 2σ(I)
graphite Rint = 0.053
Detector resolution: 7.6 pixels mm-1 θmax = 28.5°, θmin = 0.9°
ω scans h = −8→8
Absorption correction: multi-scan (SADABS; Bruker, 2005) k = −6→6
Tmin = 0.904, Tmax = 0.935 l = −31→29
7850 measured reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.056 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.132 w = 1/[σ2(Fo2) + (0.0408P)2 + 0.3674P] where P = (Fo2 + 2Fc2)/3
S = 1.02 (Δ/σ)max = 0.001
3172 reflections Δρmax = 0.25 e Å3
193 parameters Δρmin = −0.36 e Å3
4 restraints Absolute structure: Flack (1983), 1125 Friedel pairs
Primary atom site location: structure-invariant direct methods Flack parameter: 0.09 (13)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.76662 (18) 1.3639 (2) 0.57243 (4) 0.0351 (3)
Cl1 0.7848 (2) −0.1726 (4) 0.96987 (6) 0.0659 (4)
O1 0.1496 (5) 0.3015 (9) 0.79117 (14) 0.0554 (10)
H1 0.2062 0.4241 0.7719 0.083*
O2 0.9594 (5) 1.5110 (7) 0.59629 (14) 0.0498 (9)
O3 0.5902 (5) 1.5306 (7) 0.54481 (14) 0.0472 (9)
N1 0.4614 (6) 0.6117 (9) 0.75542 (16) 0.0365 (9)
N2 0.8345 (8) 1.1435 (9) 0.52410 (19) 0.0431 (11)
H21 0.726 (6) 1.068 (12) 0.5029 (19) 0.07 (2)*
H22 0.929 (8) 1.022 (12) 0.541 (2) 0.08 (2)*
C1 0.5139 (7) 0.2913 (9) 0.83587 (19) 0.0344 (11)
C2 0.2983 (8) 0.1959 (11) 0.8319 (2) 0.0394 (12)
C3 0.2389 (8) −0.0151 (12) 0.8696 (2) 0.0490 (13)
H3 0.0970 −0.0837 0.8659 0.059*
C4 0.3850 (8) −0.1254 (15) 0.91213 (19) 0.0501 (12)
H4 0.3418 −0.2638 0.9378 0.060*
C5 0.5997 (8) −0.0272 (11) 0.91650 (19) 0.0430 (12)
C6 0.6617 (8) 0.1767 (11) 0.8793 (2) 0.0420 (12)
H6 0.8048 0.2409 0.8827 0.050*
C7 0.5892 (8) 0.4971 (11) 0.7953 (2) 0.0391 (12)
H7 0.742 (7) 0.545 (10) 0.8017 (17) 0.040 (13)*
C8 0.5381 (7) 0.8040 (10) 0.71469 (17) 0.0335 (11)
C9 0.7445 (7) 0.9293 (10) 0.72084 (19) 0.0425 (13)
H9 0.8379 0.8935 0.7539 0.051*
C10 0.8097 (8) 1.1053 (10) 0.67816 (19) 0.0385 (12)
H10 0.9476 1.1875 0.6824 0.046*
C11 0.6728 (7) 1.1609 (9) 0.62919 (18) 0.0312 (10)
C12 0.4655 (7) 1.0440 (11) 0.6241 (2) 0.0422 (12)
H12 0.3702 1.0855 0.5916 0.051*
C13 0.4006 (7) 0.8677 (14) 0.66654 (18) 0.0411 (11)
H13 0.2612 0.7903 0.6627 0.049*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0380 (7) 0.0288 (5) 0.0380 (6) −0.0026 (6) 0.0009 (5) −0.0002 (6)
Cl1 0.0711 (9) 0.0698 (10) 0.0545 (8) 0.0074 (9) −0.0056 (7) 0.0153 (8)
O1 0.0333 (18) 0.065 (3) 0.066 (2) −0.0079 (19) −0.0044 (17) 0.012 (2)
O2 0.049 (2) 0.048 (2) 0.051 (2) −0.0232 (18) −0.0069 (17) 0.0015 (17)
O3 0.050 (2) 0.0369 (19) 0.053 (2) 0.0081 (17) −0.0039 (17) 0.0064 (16)
N1 0.035 (2) 0.037 (2) 0.038 (2) −0.0014 (18) 0.0037 (19) 0.0012 (18)
N2 0.047 (3) 0.040 (3) 0.043 (3) −0.003 (2) 0.011 (2) −0.010 (2)
C1 0.031 (3) 0.033 (3) 0.040 (3) 0.002 (2) 0.007 (2) −0.003 (2)
C2 0.032 (3) 0.040 (3) 0.046 (3) −0.002 (2) 0.007 (2) −0.003 (2)
C3 0.042 (3) 0.052 (3) 0.056 (3) −0.007 (3) 0.018 (3) −0.002 (3)
C4 0.060 (3) 0.052 (3) 0.042 (3) −0.006 (4) 0.021 (2) 0.000 (3)
C5 0.054 (3) 0.044 (3) 0.031 (3) 0.007 (3) 0.005 (2) −0.001 (2)
C6 0.037 (3) 0.042 (3) 0.047 (3) 0.001 (2) 0.003 (2) −0.004 (2)
C7 0.028 (3) 0.038 (3) 0.052 (3) −0.004 (2) 0.005 (3) −0.002 (2)
C8 0.033 (3) 0.035 (3) 0.034 (2) 0.003 (2) 0.008 (2) −0.003 (2)
C9 0.034 (3) 0.054 (4) 0.038 (3) −0.003 (2) −0.006 (2) 0.007 (2)
C10 0.030 (3) 0.045 (3) 0.039 (3) −0.006 (2) −0.002 (2) 0.002 (2)
C11 0.028 (3) 0.030 (2) 0.036 (3) 0.000 (2) 0.001 (2) −0.002 (2)
C12 0.029 (3) 0.049 (3) 0.046 (3) 0.000 (2) −0.008 (2) 0.008 (2)
C13 0.024 (2) 0.049 (3) 0.050 (3) −0.003 (3) 0.005 (2) 0.008 (3)

Geometric parameters (Å, °)

Cl1—C5 1.738 (5) C6—C5 1.358 (7)
S1—O2 1.435 (3) C6—H6 0.9300
S1—O3 1.434 (3) C7—N1 1.272 (6)
S1—N2 1.600 (4) C7—C1 1.446 (6)
S1—C11 1.762 (5) C7—H7 0.97 (4)
O1—H1 0.8200 C8—N1 1.412 (5)
N2—H21 0.87 (4) C9—C8 1.397 (6)
N2—H22 0.87 (5) C9—C10 1.372 (6)
C2—O1 1.344 (5) C9—H9 0.9300
C2—C3 1.381 (7) C10—H10 0.9300
C2—C1 1.400 (6) C11—C10 1.375 (6)
C3—C4 1.370 (7) C11—C12 1.386 (6)
C3—H3 0.9300 C12—H12 0.9300
C4—H4 0.9300 C13—C8 1.370 (6)
C5—C4 1.398 (7) C13—C12 1.369 (7)
C6—C1 1.397 (6) C13—H13 0.9300
O2—S1—N2 107.7 (2) C6—C5—C4 120.3 (5)
O2—S1—C11 106.48 (19) C1—C6—H6 119.5
O3—S1—O2 119.3 (2) C5—C6—C1 121.0 (5)
O3—S1—N2 105.4 (2) C5—C6—H6 119.5
O3—S1—C11 109.0 (2) N1—C7—C1 121.9 (4)
N2—S1—C11 108.6 (2) N1—C7—H7 123 (3)
C2—O1—H1 109.5 C1—C7—H7 115 (3)
C7—N1—C8 121.4 (4) C9—C8—N1 123.7 (4)
S1—N2—H21 114 (4) C13—C8—C9 118.9 (4)
S1—N2—H22 108 (4) C13—C8—N1 117.3 (4)
H21—N2—H22 117 (6) C8—C9—H9 119.9
C2—C1—C7 122.0 (4) C10—C9—C8 120.1 (4)
C6—C1—C2 118.8 (4) C10—C9—H9 119.9
C6—C1—C7 119.2 (4) C9—C10—C11 120.5 (4)
O1—C2—C1 121.0 (4) C9—C10—H10 119.8
O1—C2—C3 119.6 (5) C11—C10—H10 119.8
C3—C2—C1 119.4 (5) C10—C11—C12 119.3 (4)
C2—C3—H3 119.3 C10—C11—S1 119.8 (4)
C4—C3—C2 121.3 (5) C12—C11—S1 120.8 (3)
C4—C3—H3 119.3 C11—C12—H12 119.9
C3—C4—C5 119.2 (5) C13—C12—C11 120.2 (4)
C3—C4—H4 120.4 C13—C12—H12 119.9
C5—C4—H4 120.4 C8—C13—H13 119.6
C4—C5—Cl1 118.9 (4) C12—C13—C8 120.9 (4)
C6—C5—Cl1 120.9 (4) C12—C13—H13 119.6
O2—S1—C11—C10 −17.2 (4) C1—C6—C5—C4 −0.3 (7)
O2—S1—C11—C12 165.9 (4) C1—C6—C5—Cl1 179.2 (4)
O3—S1—C11—C10 −147.1 (4) N1—C7—C1—C6 −179.0 (5)
O3—S1—C11—C12 36.0 (4) N1—C7—C1—C2 3.1 (7)
N2—S1—C11—C10 98.5 (4) C1—C7—N1—C8 −177.6 (4)
N2—S1—C11—C12 −78.4 (4) C9—C8—N1—C7 −13.3 (7)
O1—C2—C1—C6 179.5 (4) C13—C8—N1—C7 166.4 (5)
O1—C2—C1—C7 −2.6 (7) C10—C9—C8—N1 177.4 (4)
C3—C2—C1—C6 −2.1 (7) C10—C9—C8—C13 −2.2 (7)
C3—C2—C1—C7 175.8 (4) C8—C9—C10—C11 0.3 (7)
O1—C2—C3—C4 −179.1 (5) S1—C11—C10—C9 −175.1 (4)
C1—C2—C3—C4 2.4 (8) C12—C11—C10—C9 1.8 (7)
C2—C3—C4—C5 −1.6 (8) S1—C11—C12—C13 174.8 (4)
C6—C5—C4—C3 0.5 (8) C10—C11—C12—C13 −2.0 (7)
Cl1—C5—C4—C3 −179.0 (4) C12—C13—C8—N1 −177.6 (5)
C5—C6—C1—C2 1.1 (7) C12—C13—C8—C9 2.0 (8)
C5—C6—C1—C7 −176.9 (4) C8—C13—C12—C11 0.1 (8)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O1—H1···N1 0.82 1.87 2.603 (5) 148
N2—H21···O3i 0.87 (4) 2.16 (4) 2.986 (6) 160 (5)

Symmetry codes: (i) −x+1, y−1/2, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HK2593).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Bruker (2005). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Bruker (2007). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Chohan, Z. H. (2008). J. Enz. Inhib. Med. Chem.23, 120–130. [DOI] [PubMed]
  5. Chohan, Z. H. & Shad, H. A. (2008). J. Enz. Inhib. Med. Chem.23, 369–379. [DOI] [PubMed]
  6. Chohan, Z. H., Shad, H. A., Tahir, M. N. & Khan, I. U. (2008a). Acta Cryst. E64, o725. [DOI] [PMC free article] [PubMed]
  7. Chohan, Z. H. & Supuran, C. T. (2008). J. Enz. Inhib. Med. Chem.23, 240–251. [DOI] [PubMed]
  8. Chohan, Z. H., Tahir, M. N., Shad, H. A. & Khan, I. U. (2008b). Acta Cryst. E64, o648. [DOI] [PMC free article] [PubMed]
  9. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  10. Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  11. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  12. Gelbrich, T., Bingham, A. L., Threlfall, T. L. & Hursthouse, M. B. (2008). Acta Cryst. C64, o205–o207. [DOI] [PubMed]
  13. Nishimori, I., Vullo, D., Innocenti, A., Scozzafava, A., Mastrolorenz, A. & Supuran, C. T. (2005). Bioorg. Med. Chem. Lett.15, 3828–3833. [DOI] [PubMed]
  14. Shad, H. A., Chohan, Z. H., Tahir, M. N. & Khan, I. U. (2008). Acta Cryst. E64, o635. [DOI] [PMC free article] [PubMed]
  15. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  16. Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808040853/hk2593sup1.cif

e-65-00o57-sup1.cif (17.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808040853/hk2593Isup2.hkl

e-65-00o57-Isup2.hkl (53.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES