Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Dec 10;65(Pt 1):o59–o60. doi: 10.1107/S1600536808040567

3,3′-Bis(4-chloro­phen­yl)-2,2′-(m-phenyl­enedi­oxy)diquinazolin-4(3H)-one

Hai-Zhou Yang a, Hai-Tao Gao b, Xu-Hong Yang c,*
PMCID: PMC2967973  PMID: 21581700

Abstract

In the title compound, C34H20Cl2N4O4, the two quinazoline heterocyclic systems and the adjacent chloro­benzene rings are not coplanar, but oriented at dihedral angles of 66.66 (13) and 52.48 (12)°, respectively. The quinazoline ring systems are nearly planar, with dihedral angles between the planes of the two rings of 5.43 (16) and 3.40 (14)°, and are oriented at dihedral angles of 79.73 (13) and 83.52 (13)° with respect to the adjacent benzene ring between them. Inter­molecular C—H⋯O hydrogen bonds contribute to the stability of the structure. In addition, weak π–π stacking inter­actions [centroid-to-centroid distances = 3.872 (1) and 3.876 (1) Å] are observed in the crystal structure.

Related literature

Many derivatives of quinazoline-4(3H)-one have been prepared, and their biological properties, such as anti­microbial, anti­diabetic, anti­convulsant, anti­bacterial and anti­fungal activities, and their action as protein tyrosine kinase inhibitors, EGFR inhibitors and PDGFR phospho­rylation inhibitors, have been studied by: Pandeya et al. (1999); Shiba et al. (1997); Malamas & Millen (1991); Mannschreck et al. (1984); Kung et al. (1999); Bartroli et al. (1998); Palmer et al. (1997); Tsou et al. (2001); Matsuno et al. (2002). For the synthesis, see: Yang et al. (2008). For related structures, see: Hu et al. (2006); Qu et al. (2008); Zeng et al. (2008); Sun et al. (2008).graphic file with name e-65-00o59-scheme1.jpg

Experimental

Crystal data

  • C34H20Cl2N4O4

  • M r = 619.44

  • Monoclinic, Inline graphic

  • a = 28.043 (2) Å

  • b = 11.3563 (8) Å

  • c = 21.5497 (16) Å

  • β = 122.7440 (10)°

  • V = 5772.2 (7) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.27 mm−1

  • T = 296 (2) K

  • 0.23 × 0.10 × 0.10 mm

Data collection

  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: none

  • 22711 measured reflections

  • 6251 independent reflections

  • 3432 reflections with I > 2σ(I)

  • R int = 0.069

Refinement

  • R[F 2 > 2σ(F 2)] = 0.066

  • wR(F 2) = 0.160

  • S = 1.01

  • 6251 reflections

  • 397 parameters

  • H-atom parameters constrained

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.28 e Å−3

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808040567/at2685sup1.cif

e-65-00o59-sup1.cif (26.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808040567/at2685Isup2.hkl

e-65-00o59-Isup2.hkl (306.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C20—H20⋯O2i 0.93 2.34 3.234 (3) 162

Symmetry code: (i) Inline graphic.

Acknowledgments

The authors are grateful to Xianning College for financial support of this work and providing laboratory and analytical facilities. The authors also acknowledge the Sophisticated Analytical Instrument Facility, Central China Normal University, Whuhan, for the data collection.

supplementary crystallographic information

Comment

Quinazoline derivatives have broad biological properties. Some of these activities include antimicrobial (Pandeya et al., 1999; Shiba et al., 1997), antidiabetic (Malamas & Millen, 1991), anticonvulsant (Mannschreck et al., 1984), antibacterial (Kung et al., 1999), antifungal (Bartroli et al., 1998), protein tyrosine kinase inhibitors (Palmer et al., 1997), EGFR inhibitors (Tsou et al., 2001) and PDGFR phosphorylation inhibitors (Matsuno et al., 2002). We have recently focused on the synthesis of heterocyclic compounds using an aza-Wittig reaction. We present here the synthesis and the crystal structure of the title compound, (I) (Fig. 1), which can be used as a precursor for obtaining bioactive molecules.

In the crystal structure of (I), the quinazoline heterocycle N1—C7/C8–C13/N2—C14 and N3—C22/C23–C28/N4—C21 and the adjacent chlorobenzene ring C1–C6 and C29–C34 are not co-planar, but oriented at the dihedral angles of 66.66 (13) and 52.48 (12)°, respectively. The nearly planar quinazoline ring system N1—C7/C8–C13/N2—C14 and N3—C22/C23–C28/N4—C21 are oriented with respect to the adjacent ring C15–C20 at the dihedral angles of 79.73 (13) and 83.52 (13)°, respectively.

Significant intramolecular C—H···O hydrogen bonds contribute to the stability of the molecular configuration (Fig. 2 and Table 1). The crystal structure (Fig. 2) is also stabilized by weak π–π (Table 1) stacking interactions with centroid–centroid separations of 3.872 (1) and 3.876 (1) Å for Cg2···Cg2i and Cg2···Cg6i, respectively, where Cg2 and Cg6 are the centroids of rings N3/C21—N4/C28—C27/C22 and C22–C27, respectively [symmetry code: (i) 1 - x, -y, 1 - z].

Experimental

To a solution of iminophosphorane (1.40 g, 3.0 mmol) in anhydrous THF (10 ml) was added 4-chlorophenyl isocyanate (3 mmol) under nitrogen at room temperature. After reaction, the mixture was allowed to stand for 10 h at 273–278 K, the solvent was removed under reduced pressure and diethyl ether/petroleum ether (1:2 v/v, 20 ml) was added to precipitate triphenylphosphine oxide. After filtration, the solvent was removed to give 1-(4-chlorophenyl)-3-(2-ethoxycarbonylphenyl) carbodiimide, which was used directly without further purification. To a solution of 1-(4-chlorophenyl)-3-(2-ethoxycarbonylphenyl) carbodiimide in THF (15 ml) was added m-dihydroxybenzene (0.18 g, 3 mmol). After the reaction mixture was allowed to stand for 0.5 h, the solvent was removed and anhydrous ethanol (10 ml) with several drops of EtONa in EtOH was added. The mixture was stirred for 2 h at room temperature. The solution was concentrated under reduced pressure and the residue was recrystallized from ethanol to give the title compound, (I). The product was recrystallized from methanol–dichloromethane (1:1 v/v, 20 ml) at room temperature to give crystals suitable for X-ray diffraction [m.p. 444 K, yield 45%].

Refinement

All H atoms were located in difference maps and treated as riding atoms with C—H = 0.93 Å, Uiso = 1.2Ueq(C) for Csp2.

Figures

Fig. 1.

Fig. 1.

View of the molecular structure of (I), showing the atom labelling scheme and with displacement ellipsoids drawn at the 50% probability level.

Fig. 2.

Fig. 2.

A partial view of the crystal packing of (I), showing the formation of C—H···O hydrogen-bonds, as dashed lines.

Crystal data

C34H20Cl2N4O4 F(000) = 2544
Mr = 619.44 Dx = 1.426 Mg m3
Monoclinic, C2/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2yc Cell parameters from 1972 reflections
a = 28.043 (2) Å θ = 2.3–19.8°
b = 11.3563 (8) Å µ = 0.27 mm1
c = 21.5497 (16) Å T = 296 K
β = 122.744 (1)° Block, colourless
V = 5772.2 (7) Å3 0.23 × 0.10 × 0.10 mm
Z = 8

Data collection

Bruker SMART APEX CCD area-detector diffractometer 3432 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.069
graphite θmax = 27.0°, θmin = 1.7°
φ and ω scans h = −35→35
22711 measured reflections k = −14→14
6251 independent reflections l = −26→27

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.066 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.160 H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0656P)2] where P = (Fo2 + 2Fc2)/3
6251 reflections (Δ/σ)max < 0.001
397 parameters Δρmax = 0.23 e Å3
0 restraints Δρmin = −0.28 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.15141 (12) 0.7594 (3) 0.30121 (18) 0.0559 (9)
C2 0.16014 (13) 0.6517 (3) 0.28105 (19) 0.0618 (9)
H2 0.1349 0.5902 0.2705 0.074*
C3 0.20679 (12) 0.6352 (3) 0.27648 (17) 0.0562 (9)
H3 0.2130 0.5624 0.2623 0.067*
C4 0.24445 (11) 0.7262 (3) 0.29288 (15) 0.0425 (7)
C5 0.23582 (12) 0.8331 (3) 0.31471 (17) 0.0545 (8)
H5 0.2617 0.8938 0.3269 0.065*
C6 0.18899 (12) 0.8510 (3) 0.31871 (19) 0.0615 (9)
H6 0.1828 0.9237 0.3330 0.074*
C7 0.29051 (12) 0.7746 (3) 0.22679 (17) 0.0502 (8)
C8 0.33543 (12) 0.7466 (3) 0.21498 (16) 0.0485 (8)
C9 0.33834 (15) 0.8010 (3) 0.15926 (19) 0.0705 (10)
H9 0.3132 0.8613 0.1318 0.085*
C10 0.37794 (16) 0.7665 (4) 0.1447 (2) 0.0827 (12)
H10 0.3796 0.8031 0.1073 0.099*
C11 0.41546 (16) 0.6774 (4) 0.1854 (2) 0.0776 (12)
H11 0.4419 0.6536 0.1746 0.093*
C12 0.41441 (13) 0.6231 (3) 0.24197 (17) 0.0597 (9)
H12 0.4401 0.5634 0.2691 0.072*
C13 0.37438 (11) 0.6583 (3) 0.25844 (16) 0.0460 (7)
C14 0.33712 (11) 0.6382 (2) 0.32842 (15) 0.0384 (7)
C15 0.38186 (11) 0.5356 (2) 0.44066 (15) 0.0359 (7)
C16 0.43022 (11) 0.5918 (2) 0.49417 (16) 0.0434 (7)
H16 0.4341 0.6728 0.4923 0.052*
C17 0.47308 (12) 0.5260 (3) 0.55090 (16) 0.0510 (8)
H17 0.5061 0.5629 0.5876 0.061*
C18 0.46706 (11) 0.4053 (3) 0.55324 (15) 0.0430 (7)
H18 0.4958 0.3604 0.5912 0.052*
C19 0.41816 (11) 0.3536 (2) 0.49879 (15) 0.0346 (6)
C20 0.37475 (10) 0.4164 (2) 0.44153 (15) 0.0362 (6)
H20 0.3418 0.3794 0.4048 0.043*
C21 0.42029 (10) 0.1591 (2) 0.46272 (15) 0.0365 (6)
C22 0.46375 (11) 0.1061 (2) 0.40343 (15) 0.0402 (7)
C23 0.49672 (11) 0.1357 (3) 0.37574 (16) 0.0507 (8)
H23 0.5096 0.2126 0.3803 0.061*
C24 0.51062 (12) 0.0527 (3) 0.34157 (18) 0.0626 (9)
H24 0.5332 0.0736 0.3238 0.075*
C25 0.49123 (13) −0.0619 (3) 0.33343 (18) 0.0616 (9)
H25 0.5011 −0.1179 0.3108 0.074*
C26 0.45743 (11) −0.0925 (3) 0.35886 (17) 0.0532 (8)
H26 0.4441 −0.1692 0.3531 0.064*
C27 0.44305 (10) −0.0085 (2) 0.39337 (15) 0.0388 (7)
C28 0.40453 (11) −0.0402 (3) 0.41594 (16) 0.0432 (7)
C29 0.35068 (11) 0.0301 (2) 0.46823 (15) 0.0404 (7)
C30 0.30465 (12) 0.1049 (3) 0.44078 (17) 0.0490 (8)
H30 0.3016 0.1704 0.4129 0.059*
C31 0.26329 (13) 0.0809 (3) 0.45527 (19) 0.0628 (9)
H31 0.2325 0.1315 0.4379 0.075*
C32 0.26727 (14) −0.0164 (3) 0.4949 (2) 0.0614 (9)
C33 0.31256 (14) −0.0906 (3) 0.52176 (18) 0.0628 (9)
H33 0.3150 −0.1568 0.5487 0.075*
C34 0.35451 (12) −0.0670 (3) 0.50883 (16) 0.0516 (8)
H34 0.3856 −0.1170 0.5276 0.062*
Cl1 0.09206 (4) 0.78360 (10) 0.30638 (6) 0.0883 (4)
Cl2 0.21428 (5) −0.04566 (12) 0.51094 (7) 0.1140 (5)
N1 0.29124 (9) 0.7099 (2) 0.28274 (13) 0.0414 (6)
N2 0.37633 (9) 0.6075 (2) 0.31840 (12) 0.0417 (6)
N3 0.45216 (9) 0.19030 (19) 0.44073 (12) 0.0405 (6)
N4 0.39348 (9) 0.05110 (19) 0.45116 (12) 0.0384 (6)
O1 0.33518 (7) 0.60201 (16) 0.38599 (10) 0.0447 (5)
O2 0.25236 (9) 0.8446 (2) 0.18965 (12) 0.0715 (7)
O3 0.40913 (7) 0.23167 (15) 0.50289 (10) 0.0408 (5)
O4 0.38040 (9) −0.13455 (18) 0.40336 (13) 0.0649 (7)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0412 (16) 0.061 (2) 0.063 (2) 0.0031 (16) 0.0265 (16) 0.0035 (18)
C2 0.0488 (18) 0.049 (2) 0.082 (3) −0.0122 (16) 0.0319 (18) −0.0058 (19)
C3 0.0533 (18) 0.0416 (19) 0.068 (2) −0.0043 (16) 0.0293 (17) −0.0063 (17)
C4 0.0335 (14) 0.0388 (18) 0.0436 (18) 0.0036 (13) 0.0132 (13) 0.0048 (14)
C5 0.0429 (17) 0.043 (2) 0.069 (2) −0.0033 (15) 0.0247 (16) −0.0038 (17)
C6 0.0452 (17) 0.047 (2) 0.082 (3) 0.0029 (16) 0.0282 (17) −0.0100 (18)
C7 0.0454 (17) 0.048 (2) 0.0401 (19) −0.0037 (15) 0.0117 (15) 0.0051 (16)
C8 0.0494 (17) 0.051 (2) 0.0359 (18) −0.0070 (15) 0.0172 (15) 0.0045 (15)
C9 0.069 (2) 0.081 (3) 0.052 (2) −0.010 (2) 0.0263 (19) 0.013 (2)
C10 0.072 (2) 0.123 (4) 0.054 (2) −0.017 (3) 0.035 (2) 0.006 (3)
C11 0.075 (2) 0.110 (4) 0.062 (3) −0.016 (2) 0.046 (2) −0.013 (2)
C12 0.0563 (19) 0.074 (3) 0.051 (2) −0.0059 (17) 0.0307 (17) −0.0092 (18)
C13 0.0439 (16) 0.050 (2) 0.0389 (18) −0.0101 (14) 0.0189 (14) −0.0082 (15)
C14 0.0393 (15) 0.0325 (17) 0.0362 (17) −0.0018 (13) 0.0158 (13) 0.0015 (13)
C15 0.0382 (14) 0.0334 (17) 0.0399 (17) 0.0063 (13) 0.0235 (13) 0.0072 (14)
C16 0.0502 (17) 0.0269 (16) 0.0521 (19) −0.0039 (13) 0.0270 (15) −0.0011 (14)
C17 0.0451 (17) 0.043 (2) 0.047 (2) −0.0094 (14) 0.0135 (15) −0.0039 (16)
C18 0.0419 (16) 0.0392 (18) 0.0384 (17) 0.0024 (13) 0.0156 (14) 0.0055 (14)
C19 0.0432 (15) 0.0255 (15) 0.0422 (17) −0.0030 (12) 0.0278 (14) −0.0001 (13)
C20 0.0329 (14) 0.0360 (17) 0.0365 (16) −0.0042 (12) 0.0167 (12) −0.0052 (13)
C21 0.0370 (14) 0.0288 (16) 0.0414 (17) 0.0008 (12) 0.0197 (13) −0.0009 (13)
C22 0.0365 (14) 0.0397 (18) 0.0420 (17) −0.0023 (13) 0.0197 (13) −0.0031 (14)
C23 0.0518 (17) 0.052 (2) 0.054 (2) −0.0095 (15) 0.0329 (16) −0.0074 (16)
C24 0.0541 (19) 0.082 (3) 0.063 (2) −0.0146 (19) 0.0385 (18) −0.018 (2)
C25 0.0528 (18) 0.069 (2) 0.067 (2) 0.0015 (18) 0.0351 (18) −0.018 (2)
C26 0.0444 (16) 0.048 (2) 0.064 (2) −0.0031 (15) 0.0278 (16) −0.0148 (17)
C27 0.0325 (14) 0.0362 (17) 0.0429 (17) −0.0004 (12) 0.0171 (13) −0.0052 (14)
C28 0.0417 (15) 0.0326 (17) 0.0532 (19) 0.0014 (14) 0.0243 (14) −0.0015 (15)
C29 0.0385 (15) 0.0370 (17) 0.0476 (18) −0.0055 (13) 0.0247 (14) −0.0008 (15)
C30 0.0478 (16) 0.0437 (19) 0.060 (2) 0.0019 (15) 0.0320 (16) 0.0043 (16)
C31 0.0513 (19) 0.066 (2) 0.079 (3) 0.0040 (17) 0.0404 (19) −0.005 (2)
C32 0.065 (2) 0.070 (3) 0.071 (2) −0.0168 (19) 0.051 (2) −0.011 (2)
C33 0.073 (2) 0.066 (2) 0.058 (2) −0.013 (2) 0.0403 (19) 0.0077 (19)
C34 0.0539 (18) 0.046 (2) 0.052 (2) 0.0009 (15) 0.0267 (16) 0.0093 (16)
Cl1 0.0611 (5) 0.0904 (8) 0.1270 (9) 0.0016 (5) 0.0599 (6) −0.0005 (7)
Cl2 0.1066 (8) 0.1518 (12) 0.1397 (11) −0.0316 (8) 0.1032 (8) −0.0167 (9)
N1 0.0382 (12) 0.0372 (14) 0.0401 (14) 0.0015 (11) 0.0156 (11) 0.0056 (12)
N2 0.0447 (13) 0.0413 (15) 0.0408 (14) 0.0015 (11) 0.0243 (12) 0.0008 (12)
N3 0.0452 (13) 0.0337 (14) 0.0461 (15) −0.0044 (11) 0.0271 (12) −0.0036 (12)
N4 0.0415 (12) 0.0280 (13) 0.0506 (15) −0.0043 (10) 0.0280 (12) −0.0044 (11)
O1 0.0427 (10) 0.0424 (12) 0.0497 (12) 0.0110 (9) 0.0255 (10) 0.0148 (10)
O2 0.0596 (13) 0.0775 (17) 0.0605 (15) 0.0203 (13) 0.0214 (12) 0.0328 (14)
O3 0.0572 (11) 0.0245 (10) 0.0509 (13) −0.0027 (9) 0.0358 (10) −0.0013 (9)
O4 0.0691 (14) 0.0408 (13) 0.1020 (19) −0.0178 (11) 0.0576 (14) −0.0200 (13)

Geometric parameters (Å, °)

C1—C2 1.364 (4) C17—H17 0.9300
C1—C6 1.380 (4) C18—C19 1.365 (4)
C1—Cl1 1.749 (3) C18—H18 0.9300
C2—C3 1.377 (4) C19—C20 1.374 (3)
C2—H2 0.9300 C19—O3 1.419 (3)
C3—C4 1.380 (4) C20—H20 0.9300
C3—H3 0.9300 C21—N3 1.268 (3)
C4—C5 1.370 (4) C21—O3 1.349 (3)
C4—N1 1.454 (3) C21—N4 1.389 (3)
C5—C6 1.377 (4) C22—C23 1.386 (4)
C5—H5 0.9300 C22—C27 1.394 (4)
C6—H6 0.9300 C22—N3 1.396 (3)
C7—O2 1.221 (3) C23—C24 1.376 (4)
C7—N1 1.402 (4) C23—H23 0.9300
C7—C8 1.449 (4) C24—C25 1.384 (4)
C8—C9 1.392 (4) C24—H24 0.9300
C8—C13 1.403 (4) C25—C26 1.372 (4)
C9—C10 1.364 (5) C25—H25 0.9300
C9—H9 0.9300 C26—C27 1.396 (4)
C10—C11 1.379 (5) C26—H26 0.9300
C10—H10 0.9300 C27—C28 1.450 (4)
C11—C12 1.380 (5) C28—O4 1.217 (3)
C11—H11 0.9300 C28—N4 1.415 (3)
C12—C13 1.406 (4) C29—C34 1.376 (4)
C12—H12 0.9300 C29—C30 1.382 (4)
C13—N2 1.389 (3) C29—N4 1.453 (3)
C14—N2 1.278 (3) C30—C31 1.381 (4)
C14—O1 1.336 (3) C30—H30 0.9300
C14—N1 1.385 (3) C31—C32 1.364 (5)
C15—C20 1.370 (4) C31—H31 0.9300
C15—C16 1.372 (4) C32—C33 1.364 (5)
C15—O1 1.415 (3) C32—Cl2 1.730 (3)
C16—C17 1.381 (4) C33—C34 1.374 (4)
C16—H16 0.9300 C33—H33 0.9300
C17—C18 1.385 (4) C34—H34 0.9300
C2—C1—C6 121.4 (3) C20—C19—O3 117.5 (2)
C2—C1—Cl1 120.1 (3) C15—C20—C19 117.4 (2)
C6—C1—Cl1 118.5 (3) C15—C20—H20 121.3
C1—C2—C3 119.0 (3) C19—C20—H20 121.3
C1—C2—H2 120.5 N3—C21—O3 121.6 (2)
C3—C2—H2 120.5 N3—C21—N4 127.1 (2)
C2—C3—C4 120.4 (3) O3—C21—N4 111.3 (2)
C2—C3—H3 119.8 C23—C22—C27 118.6 (3)
C4—C3—H3 119.8 C23—C22—N3 119.9 (3)
C5—C4—C3 119.9 (3) C27—C22—N3 121.5 (2)
C5—C4—N1 120.4 (3) C24—C23—C22 120.8 (3)
C3—C4—N1 119.6 (3) C24—C23—H23 119.6
C4—C5—C6 120.3 (3) C22—C23—H23 119.6
C4—C5—H5 119.9 C23—C24—C25 120.4 (3)
C6—C5—H5 119.9 C23—C24—H24 119.8
C5—C6—C1 119.0 (3) C25—C24—H24 119.8
C5—C6—H6 120.5 C26—C25—C24 119.8 (3)
C1—C6—H6 120.5 C26—C25—H25 120.1
O2—C7—N1 120.3 (3) C24—C25—H25 120.1
O2—C7—C8 124.4 (3) C25—C26—C27 120.0 (3)
N1—C7—C8 115.2 (3) C25—C26—H26 120.0
C9—C8—C13 120.4 (3) C27—C26—H26 120.0
C9—C8—C7 121.1 (3) C22—C27—C26 120.3 (3)
C13—C8—C7 118.5 (3) C22—C27—C28 120.2 (2)
C10—C9—C8 120.3 (4) C26—C27—C28 119.4 (3)
C10—C9—H9 119.8 O4—C28—N4 120.5 (3)
C8—C9—H9 119.8 O4—C28—C27 124.7 (3)
C9—C10—C11 120.0 (4) N4—C28—C27 114.6 (2)
C9—C10—H10 120.0 C34—C29—C30 119.9 (3)
C11—C10—H10 120.0 C34—C29—N4 120.1 (2)
C10—C11—C12 121.1 (3) C30—C29—N4 119.9 (2)
C10—C11—H11 119.5 C31—C30—C29 119.1 (3)
C12—C11—H11 119.5 C31—C30—H30 120.5
C11—C12—C13 119.8 (3) C29—C30—H30 120.5
C11—C12—H12 120.1 C32—C31—C30 120.5 (3)
C13—C12—H12 120.1 C32—C31—H31 119.8
N2—C13—C8 122.8 (3) C30—C31—H31 119.8
N2—C13—C12 118.8 (3) C31—C32—C33 120.5 (3)
C8—C13—C12 118.3 (3) C31—C32—Cl2 119.5 (3)
N2—C14—O1 123.0 (2) C33—C32—Cl2 120.0 (3)
N2—C14—N1 126.4 (3) C32—C33—C34 119.8 (3)
O1—C14—N1 110.6 (2) C32—C33—H33 120.1
C20—C15—C16 122.2 (3) C34—C33—H33 120.1
C20—C15—O1 117.5 (2) C33—C34—C29 120.3 (3)
C16—C15—O1 120.1 (2) C33—C34—H34 119.9
C15—C16—C17 118.9 (3) C29—C34—H34 119.9
C15—C16—H16 120.5 C14—N1—C7 119.7 (2)
C17—C16—H16 120.5 C14—N1—C4 122.3 (2)
C16—C17—C18 120.2 (3) C7—N1—C4 117.9 (2)
C16—C17—H17 119.9 C14—N2—C13 116.1 (2)
C18—C17—H17 119.9 C21—N3—C22 117.0 (2)
C19—C18—C17 118.7 (3) C21—N4—C28 119.3 (2)
C19—C18—H18 120.6 C21—N4—C29 122.7 (2)
C17—C18—H18 120.6 C28—N4—C29 117.8 (2)
C18—C19—C20 122.6 (2) C14—O1—C15 116.9 (2)
C18—C19—O3 119.8 (2) C21—O3—C19 116.43 (19)
C6—C1—C2—C3 −1.5 (5) C34—C29—C30—C31 0.5 (4)
Cl1—C1—C2—C3 179.2 (3) N4—C29—C30—C31 177.5 (3)
C1—C2—C3—C4 0.7 (5) C29—C30—C31—C32 −1.3 (5)
C2—C3—C4—C5 0.8 (5) C30—C31—C32—C33 1.0 (5)
C2—C3—C4—N1 −175.6 (3) C30—C31—C32—Cl2 −178.9 (2)
C3—C4—C5—C6 −1.5 (5) C31—C32—C33—C34 0.0 (5)
N1—C4—C5—C6 174.9 (3) Cl2—C32—C33—C34 180.0 (3)
C4—C5—C6—C1 0.7 (5) C32—C33—C34—C29 −0.8 (5)
C2—C1—C6—C5 0.9 (5) C30—C29—C34—C33 0.5 (4)
Cl1—C1—C6—C5 −179.9 (2) N4—C29—C34—C33 −176.5 (3)
O2—C7—C8—C9 1.0 (5) N2—C14—N1—C7 −12.6 (4)
N1—C7—C8—C9 177.5 (3) O1—C14—N1—C7 168.3 (2)
O2—C7—C8—C13 −175.6 (3) N2—C14—N1—C4 170.8 (3)
N1—C7—C8—C13 1.0 (4) O1—C14—N1—C4 −8.3 (3)
C13—C8—C9—C10 2.1 (5) O2—C7—N1—C14 −174.7 (3)
C7—C8—C9—C10 −174.3 (3) C8—C7—N1—C14 8.7 (4)
C8—C9—C10—C11 −0.2 (6) O2—C7—N1—C4 2.1 (4)
C9—C10—C11—C12 −1.0 (6) C8—C7—N1—C4 −174.6 (2)
C10—C11—C12—C13 0.3 (5) C5—C4—N1—C14 112.2 (3)
C9—C8—C13—N2 174.8 (3) C3—C4—N1—C14 −71.4 (3)
C7—C8—C13—N2 −8.7 (4) C5—C4—N1—C7 −64.5 (4)
C9—C8—C13—C12 −2.8 (4) C3—C4—N1—C7 112.0 (3)
C7—C8—C13—C12 173.8 (3) O1—C14—N2—C13 −176.1 (2)
C11—C12—C13—N2 −176.1 (3) N1—C14—N2—C13 4.8 (4)
C11—C12—C13—C8 1.6 (5) C8—C13—N2—C14 6.0 (4)
C20—C15—C16—C17 −0.2 (4) C12—C13—N2—C14 −176.5 (3)
O1—C15—C16—C17 173.9 (2) O3—C21—N3—C22 176.2 (2)
C15—C16—C17—C18 0.1 (4) N4—C21—N3—C22 −2.9 (4)
C16—C17—C18—C19 −0.2 (4) C23—C22—N3—C21 177.8 (3)
C17—C18—C19—C20 0.3 (4) C27—C22—N3—C21 −2.5 (4)
C17—C18—C19—O3 −175.2 (2) N3—C21—N4—C28 5.0 (4)
C16—C15—C20—C19 0.3 (4) O3—C21—N4—C28 −174.2 (2)
O1—C15—C20—C19 −174.0 (2) N3—C21—N4—C29 −169.8 (3)
C18—C19—C20—C15 −0.3 (4) O3—C21—N4—C29 11.0 (3)
O3—C19—C20—C15 175.3 (2) O4—C28—N4—C21 −178.0 (3)
C27—C22—C23—C24 −2.5 (4) C27—C28—N4—C21 −1.5 (4)
N3—C22—C23—C24 177.2 (3) O4—C28—N4—C29 −2.9 (4)
C22—C23—C24—C25 0.8 (5) C27—C28—N4—C29 173.5 (2)
C23—C24—C25—C26 0.7 (5) C34—C29—N4—C21 −130.7 (3)
C24—C25—C26—C27 −0.5 (5) C30—C29—N4—C21 52.3 (4)
C23—C22—C27—C26 2.7 (4) C34—C29—N4—C28 54.4 (4)
N3—C22—C27—C26 −177.0 (3) C30—C29—N4—C28 −122.6 (3)
C23—C22—C27—C28 −174.8 (3) N2—C14—O1—C15 5.8 (4)
N3—C22—C27—C28 5.5 (4) N1—C14—O1—C15 −175.0 (2)
C25—C26—C27—C22 −1.2 (4) C20—C15—O1—C14 −103.7 (3)
C25—C26—C27—C28 176.3 (3) C16—C15—O1—C14 82.0 (3)
C22—C27—C28—O4 173.0 (3) N3—C21—O3—C19 20.3 (4)
C26—C27—C28—O4 −4.5 (4) N4—C21—O3—C19 −160.5 (2)
C22—C27—C28—N4 −3.3 (4) C18—C19—O3—C21 −98.9 (3)
C26—C27—C28—N4 179.3 (2) C20—C19—O3—C21 85.4 (3)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C20—H20···O2i 0.93 2.34 3.234 (3) 162

Symmetry codes: (i) −x+1/2, y−1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: AT2685).

References

  1. Bartroli, J., Turmo, E., Alguero, M., Boncompte, E., Vericat, M. L., Conte, L., Ramis, J., Merlos, M., Garcia-Rafanell, J. & Forn, J. (1998). J. Med. Chem.41, 1869–1882. [DOI] [PubMed]
  2. Bruker (2000). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Hu, Y.-G., Zheng, A.-H. & Li, G.-H. (2006). Acta Cryst. E62, o1457–o1459.
  4. Kung, P. P., Casper, M. D., Cook, K. L., Wilson-Lingardo, L., Risen, L. M., Vickers, T. A., Ranken, R., Blyn, L. B., Wyatt, J. R., Cook, P. D. & Ecker, D. J. (1999). J. Med. Chem.42, 4705–4713. [DOI] [PubMed]
  5. Malamas, M. S. & Millen, J. (1991). J. Med. Chem.34, 1492–1503. [DOI] [PubMed]
  6. Mannschreck, A., Koller, H., Stuhler, G., Davis, M. A. & Traber, J. (1984). Eur. J. Med. Chem.19, 381–383.
  7. Matsuno, K., Ichimura, M., Nakajima, T., Tahara, K., Fujiwara, S., Kase, H., Ushiki, J., Giese, N. A., Pandey, A., Scarborough, R. M., Lokker, N. A., Yu, J. C., Irie, J., Tsukuda, E., Ide, S., Oda, S. & Nomoto, Y. (2002). J. Med. Chem.45, 3057–3066. [DOI] [PubMed]
  8. Palmer, B. D., Trumpp-Kallmeyer, S., Fry, D. W., Nelson, J. M., Showalter, H. D. H. & Denny, W. A. (1997). J. Med. Chem.40, 1519–1529. [DOI] [PubMed]
  9. Pandeya, S. N., Sriram, D., Nath, G. & Cler, E. De. (1999). Pharm. Acta Helv.74, 11–17. [DOI] [PubMed]
  10. Qu, Y.-N., Pan, L.-R. & Hu, Y.-G. (2008). Acta Cryst. E64, o137. [DOI] [PMC free article] [PubMed]
  11. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  12. Shiba, S. A., El-Khamry, A. A., Shaban, M. & Atia, K. S. (1997). Pharmazie, 52, 189–194. [PubMed]
  13. Sun, Y., Zeng, G.-P. & Hu, Y.-G. (2008). Acta Cryst. E64, o311–o312. [DOI] [PMC free article] [PubMed]
  14. Tsou, H. R., Mamuya, N., Johnson, B. D., Reich, M. F., Gruber, B. C., Ye, F., Nilakantan, R., Shen, R., Discafani, C., DeBlanc, R., Davis, R., Koehn, F. E., Greenberger, L. M., Wang, Y. F. & Wissner, A. (2001). J. Med. Chem.44, 2719–2734. [DOI] [PubMed]
  15. Yang, X. H., Wu, M. H., Sun, S. F., Ding, M. W., Xie, J. L. & Xia, Q. H. (2008). J. Heterocycl. Chem.45, 1365–1369.
  16. Zeng, G., Li, Q. & Hu, Y. (2008). Acta Cryst. E64, o535. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808040567/at2685sup1.cif

e-65-00o59-sup1.cif (26.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808040567/at2685Isup2.hkl

e-65-00o59-Isup2.hkl (306.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES