Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Dec 10;65(Pt 1):o64. doi: 10.1107/S1600536808040993

2-Chloro-3-(4-chloro­benzamido)-1,4-naphthoquinone

Yakini Brandy a, Ray J Butcher a,*, Tolulope A Adesiyun a, Solomon Berhe a, Oladapo Bakare a
PMCID: PMC2967976  PMID: 21581704

Abstract

The naphthoquinone ring is almost perpendicular [dihedral angle 71.02 (3)°] to the phenyl group of the title compound, C17H9Cl2NO3, while the dihedral angle between the amide group and the 4-chloro­phenyl ring is 21.9 (2)°. The conformation of the N—H and C=O bonds are anti to each other. N—H⋯Cl hydrogen bonds link the mol­ecules into chains in the a-axis direction. In addition, these chains are linked by weak inter­molecular C—H⋯O inter­actions.

Related literature

For similar structures see: Lien et al. (1997); Huang et al. (2005); Bakare et al. (2003); Copeland et al. (2007); Win et al. (2005); Rubin-Preminger et al. (2004). For related literature, see: Gowda, Kožíšek et al. (2008); Gowda, Tokarčík et al. (2008); van Oosten et al. (2008); Shen et al. (2008).graphic file with name e-65-00o64-scheme1.jpg

Experimental

Crystal data

  • C17H9Cl2NO3

  • M r = 346.15

  • Monoclinic, Inline graphic

  • a = 5.6011 (2) Å

  • b = 8.7237 (3) Å

  • c = 29.7957 (9) Å

  • β = 93.504 (3)°

  • V = 1453.16 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.46 mm−1

  • T = 200 (2) K

  • 0.49 × 0.41 × 0.12 mm

Data collection

  • Oxford Diffraction Gemini R diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2007) T min = 0.887, T max = 1.000 (expected range = 0.839–0.946)

  • 13882 measured reflections

  • 4842 independent reflections

  • 2832 reflections with I > 2σ(I)

  • R int = 0.035

Refinement

  • R[F 2 > 2σ(F 2)] = 0.038

  • wR(F 2) = 0.086

  • S = 0.93

  • 4842 reflections

  • 208 parameters

  • H-atom parameters constrained

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.36 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2007); cell refinement: CrysAlis RED (Oxford Diffraction, 2007); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808040993/at2690sup1.cif

e-65-00o64-sup1.cif (18.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808040993/at2690Isup2.hkl

e-65-00o64-Isup2.hkl (237.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N—H0A⋯Cl1i 0.88 2.89 3.6491 (12) 145
C14—H14A⋯O2ii 0.95 2.40 3.2517 (19) 149

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

RJB acknowledges the Laboratory for the Structure of Matter at the Naval Research Laboratory for access to their diffractometers.

supplementary crystallographic information

Comment

The amido and imido derivatives of 3-chloro-1,4-naphthoquinone are well known for their anti-inflammatory, antiplatelet, antiallergic and anticancer activities (Lien et al., 1997; Huang et al., 2005; Bakare et al., 2003; Copeland et al., 2007). The title compound, 2-chloro-3-(p-chlorobenzamido)-1,4-naphthoquinone was obtained as an intermediate in the synthesis of some oxazolo-1,4-naphthoquinone and imido-substituted-1,4-naphthoquinone analogs.

The naphthoquinone ring is almost perpendicular to the phenyl group of the title compound C17H9Cl2NO3, while the dihedral angle betwen the amide group and the 4-chlorophenyl ring is 21.9 (2)° (Fig. 1). The conformation of the N—H and C=O bonds are anti to each other (Gowda, Kožíšek et al., 2008; Gowda, Tokarčík et al., 2008). N—H···Cl hydrogen bonds link the molecules into chains in the a direction. In addition, these chains are linked by weak intermolecular Ar—H···O interactions (Fig. 2, Table 1).

Experimental

A mixture of 2-amino-3-chloro-1,4-naphthoquinone (213 mg, 1.03 mmol) and 4-chloro-benzoylchloride (2 ml) was refluxed for 2 1/2 h (powerstat setting at 70). The reaction mixture was cooled to room temperature. The precipitate was isolated by vacuum filtration and the yellow-grey solid was washed with diethyl ether. The crude was recrystallized from ethanol (20 ml) to obtain a yellow solid (67 mg, 18.8%). Crystals for x-ray study were obtained by recrystallization from methanol.

Refinement

All H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with C—H = 0.95 Å, N—H = 0.88 Å and Uiso(H) = 1.2Ueq(C, N).

Figures

Fig. 1.

Fig. 1.

View of (I) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 20% probability level.

Fig. 2.

Fig. 2.

View of the packing viewed down the a axis. Dashed bonds show weak C—H···O interactions.

Crystal data

C17H9Cl2NO3 F(000) = 704
Mr = 346.15 Dx = 1.582 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 4629 reflections
a = 5.6011 (2) Å θ = 4.6–32.5°
b = 8.7237 (3) Å µ = 0.46 mm1
c = 29.7957 (9) Å T = 200 K
β = 93.504 (3)° Plate, pale yellow
V = 1453.16 (8) Å3 0.49 × 0.41 × 0.12 mm
Z = 4

Data collection

Oxford Diffraction Gemini R diffractometer 4842 independent reflections
Radiation source: fine-focus sealed tube 2832 reflections with I > 2σ(I)
graphite Rint = 0.035
Detector resolution: 10.5081 pixels mm-1 θmax = 32.6°, θmin = 4.6°
φ and ω scans h = −8→8
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2007) k = −12→12
Tmin = 0.887, Tmax = 1.000 l = −44→44
13882 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.086 H-atom parameters constrained
S = 0.93 w = 1/[σ2(Fo2) + (0.0416P)2] where P = (Fo2 + 2Fc2)/3
4842 reflections (Δ/σ)max = 0.001
208 parameters Δρmax = 0.29 e Å3
0 restraints Δρmin = −0.36 e Å3

Special details

Experimental. (CrysAlis RED; Oxford Diffraction, 2007) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1 0.42210 (6) 0.13331 (4) 0.298854 (11) 0.02796 (10)
Cl2 −0.42944 (7) −0.05032 (6) 0.057164 (13) 0.04852 (14)
O1 0.54644 (18) 0.07511 (14) 0.39281 (4) 0.0401 (3)
O2 −0.26101 (17) −0.20745 (14) 0.33569 (3) 0.0378 (3)
O3 0.31583 (17) −0.12832 (14) 0.24103 (3) 0.0364 (3)
N −0.02512 (19) −0.06128 (15) 0.27365 (4) 0.0273 (3)
H0A −0.1786 −0.0415 0.2689 0.033*
C1 0.3653 (2) 0.00688 (18) 0.38026 (5) 0.0275 (3)
C2 0.2705 (2) 0.01309 (17) 0.33244 (4) 0.0251 (3)
C3 0.0712 (2) −0.06238 (17) 0.31773 (4) 0.0240 (3)
C4 −0.0749 (2) −0.14777 (18) 0.34975 (5) 0.0264 (3)
C5 0.0144 (2) −0.15604 (18) 0.39758 (5) 0.0272 (3)
C6 −0.1138 (3) −0.2369 (2) 0.42817 (5) 0.0391 (4)
H6A −0.2591 −0.2864 0.4186 0.047*
C7 −0.0289 (3) −0.2451 (3) 0.47288 (5) 0.0477 (5)
H7A −0.1169 −0.3002 0.4939 0.057*
C8 0.1823 (3) −0.1737 (2) 0.48705 (5) 0.0477 (5)
H8A 0.2390 −0.1794 0.5177 0.057*
C9 0.3111 (3) −0.0940 (2) 0.45660 (5) 0.0391 (4)
H9A 0.4574 −0.0459 0.4663 0.047*
C10 0.2273 (2) −0.08383 (18) 0.41170 (5) 0.0287 (3)
C11 0.1070 (3) −0.08964 (17) 0.23680 (5) 0.0263 (3)
C12 −0.0252 (2) −0.07098 (17) 0.19218 (4) 0.0245 (3)
C13 −0.2316 (2) 0.01736 (18) 0.18635 (5) 0.0277 (3)
H13A −0.2882 0.0726 0.2110 0.033*
C14 −0.3550 (3) 0.02492 (19) 0.14462 (5) 0.0315 (3)
H14A −0.4966 0.0846 0.1406 0.038*
C15 −0.2697 (3) −0.05531 (19) 0.10907 (5) 0.0307 (3)
C16 −0.0608 (3) −0.1395 (2) 0.11357 (5) 0.0319 (3)
H16A −0.0020 −0.1913 0.0885 0.038*
C17 0.0618 (3) −0.14706 (19) 0.15551 (5) 0.0295 (3)
H17A 0.2058 −0.2045 0.1592 0.035*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.02827 (17) 0.0286 (2) 0.02758 (17) −0.00541 (15) 0.00608 (13) 0.00212 (15)
Cl2 0.0514 (2) 0.0680 (4) 0.02503 (18) 0.0176 (2) −0.00744 (17) −0.0029 (2)
O1 0.0364 (6) 0.0500 (8) 0.0334 (6) −0.0141 (6) −0.0034 (5) −0.0042 (5)
O2 0.0321 (5) 0.0490 (8) 0.0318 (6) −0.0152 (5) −0.0010 (5) 0.0023 (5)
O3 0.0328 (6) 0.0476 (8) 0.0288 (5) 0.0120 (5) 0.0007 (4) −0.0072 (5)
N 0.0240 (6) 0.0383 (8) 0.0196 (5) 0.0012 (5) 0.0019 (5) 0.0013 (5)
C1 0.0266 (7) 0.0307 (9) 0.0253 (7) −0.0004 (6) 0.0021 (6) −0.0031 (6)
C2 0.0272 (7) 0.0247 (8) 0.0239 (7) 0.0006 (6) 0.0058 (6) −0.0012 (6)
C3 0.0252 (6) 0.0278 (8) 0.0192 (6) 0.0026 (6) 0.0028 (5) −0.0013 (6)
C4 0.0278 (7) 0.0268 (8) 0.0248 (7) −0.0014 (6) 0.0030 (6) −0.0008 (6)
C5 0.0294 (7) 0.0302 (9) 0.0220 (6) 0.0000 (6) 0.0023 (6) 0.0005 (6)
C6 0.0374 (8) 0.0517 (12) 0.0286 (7) −0.0087 (8) 0.0041 (7) 0.0049 (8)
C7 0.0502 (10) 0.0654 (14) 0.0282 (8) −0.0078 (9) 0.0083 (7) 0.0117 (9)
C8 0.0532 (10) 0.0680 (15) 0.0214 (7) 0.0003 (10) −0.0008 (7) 0.0049 (8)
C9 0.0374 (8) 0.0562 (12) 0.0232 (7) −0.0047 (8) −0.0026 (6) −0.0018 (7)
C10 0.0296 (7) 0.0348 (9) 0.0218 (6) 0.0004 (6) 0.0023 (6) −0.0028 (6)
C11 0.0306 (7) 0.0258 (8) 0.0228 (7) 0.0018 (6) 0.0033 (6) −0.0012 (6)
C12 0.0275 (7) 0.0260 (8) 0.0201 (6) −0.0020 (6) 0.0034 (5) 0.0002 (6)
C13 0.0321 (7) 0.0282 (8) 0.0233 (7) 0.0034 (6) 0.0060 (6) −0.0017 (6)
C14 0.0293 (7) 0.0361 (9) 0.0291 (7) 0.0071 (7) 0.0022 (6) 0.0014 (7)
C15 0.0359 (8) 0.0359 (9) 0.0202 (6) 0.0015 (7) −0.0008 (6) 0.0018 (7)
C16 0.0347 (8) 0.0400 (10) 0.0215 (7) 0.0064 (7) 0.0051 (6) −0.0032 (7)
C17 0.0292 (7) 0.0348 (9) 0.0246 (7) 0.0052 (6) 0.0035 (6) −0.0009 (6)

Geometric parameters (Å, °)

Cl1—C2 1.7105 (15) C7—C8 1.380 (2)
Cl2—C15 1.7394 (14) C7—H7A 0.9500
O1—C1 1.2154 (17) C8—C9 1.381 (2)
O2—C4 1.2166 (16) C8—H8A 0.9500
O3—C11 1.2167 (16) C9—C10 1.3932 (19)
N—C11 1.3834 (18) C9—H9A 0.9500
N—C3 1.3890 (15) C11—C12 1.4905 (19)
N—H0A 0.8800 C12—C17 1.392 (2)
C1—C10 1.480 (2) C12—C13 1.392 (2)
C1—C2 1.4907 (18) C13—C14 1.3867 (19)
C2—C3 1.3461 (19) C13—H13A 0.9500
C3—C4 1.494 (2) C14—C15 1.379 (2)
C4—C5 1.4829 (19) C14—H14A 0.9500
C5—C6 1.387 (2) C15—C16 1.381 (2)
C5—C10 1.391 (2) C16—C17 1.3903 (19)
C6—C7 1.389 (2) C16—H16A 0.9500
C6—H6A 0.9500 C17—H17A 0.9500
C11—N—C3 123.62 (11) C8—C9—C10 120.27 (15)
C11—N—H0A 118.2 C8—C9—H9A 119.9
C3—N—H0A 118.2 C10—C9—H9A 119.9
O1—C1—C10 121.71 (13) C5—C10—C9 119.60 (14)
O1—C1—C2 121.20 (14) C5—C10—C1 121.47 (12)
C10—C1—C2 117.08 (12) C9—C10—C1 118.91 (13)
C3—C2—C1 122.21 (13) O3—C11—N 121.65 (12)
C3—C2—Cl1 122.74 (11) O3—C11—C12 123.01 (13)
C1—C2—Cl1 114.90 (10) N—C11—C12 115.34 (12)
C2—C3—N 124.82 (13) C17—C12—C13 119.63 (12)
C2—C3—C4 120.79 (12) C17—C12—C11 118.00 (12)
N—C3—C4 114.27 (12) C13—C12—C11 122.36 (12)
O2—C4—C5 122.80 (13) C14—C13—C12 120.19 (13)
O2—C4—C3 119.01 (12) C14—C13—H13A 119.9
C5—C4—C3 118.19 (12) C12—C13—H13A 119.9
C6—C5—C10 120.03 (13) C15—C14—C13 119.16 (13)
C6—C5—C4 119.89 (13) C15—C14—H14A 120.4
C10—C5—C4 120.08 (13) C13—C14—H14A 120.4
C5—C6—C7 119.71 (15) C14—C15—C16 121.78 (13)
C5—C6—H6A 120.1 C14—C15—Cl2 119.11 (11)
C7—C6—H6A 120.1 C16—C15—Cl2 119.11 (11)
C8—C7—C6 120.49 (16) C15—C16—C17 118.79 (14)
C8—C7—H7A 119.8 C15—C16—H16A 120.6
C6—C7—H7A 119.8 C17—C16—H16A 120.6
C7—C8—C9 119.89 (14) C16—C17—C12 120.37 (13)
C7—C8—H8A 120.1 C16—C17—H17A 119.8
C9—C8—H8A 120.1 C12—C17—H17A 119.8
O1—C1—C2—C3 179.54 (14) C6—C5—C10—C1 −178.31 (15)
C10—C1—C2—C3 −1.3 (2) C4—C5—C10—C1 2.1 (2)
O1—C1—C2—Cl1 −4.8 (2) C8—C9—C10—C5 −0.8 (3)
C10—C1—C2—Cl1 174.35 (11) C8—C9—C10—C1 177.93 (16)
C1—C2—C3—N −179.82 (14) O1—C1—C10—C5 177.09 (15)
Cl1—C2—C3—N 4.8 (2) C2—C1—C10—C5 −2.0 (2)
C1—C2—C3—C4 4.4 (2) O1—C1—C10—C9 −1.6 (2)
Cl1—C2—C3—C4 −170.99 (11) C2—C1—C10—C9 179.29 (14)
C11—N—C3—C2 49.6 (2) C3—N—C11—O3 5.2 (2)
C11—N—C3—C4 −134.37 (14) C3—N—C11—C12 −175.37 (13)
C2—C3—C4—O2 175.91 (14) O3—C11—C12—C17 21.9 (2)
N—C3—C4—O2 −0.3 (2) N—C11—C12—C17 −157.54 (14)
C2—C3—C4—C5 −4.1 (2) O3—C11—C12—C13 −159.00 (15)
N—C3—C4—C5 179.64 (12) N—C11—C12—C13 21.6 (2)
O2—C4—C5—C6 1.2 (2) C17—C12—C13—C14 2.4 (2)
C3—C4—C5—C6 −178.73 (15) C11—C12—C13—C14 −176.72 (14)
O2—C4—C5—C10 −179.23 (15) C12—C13—C14—C15 −0.4 (2)
C3—C4—C5—C10 0.8 (2) C13—C14—C15—C16 −1.9 (2)
C10—C5—C6—C7 0.1 (3) C13—C14—C15—Cl2 178.10 (12)
C4—C5—C6—C7 179.64 (16) C14—C15—C16—C17 2.1 (2)
C5—C6—C7—C8 −0.2 (3) Cl2—C15—C16—C17 −177.92 (13)
C6—C7—C8—C9 −0.3 (3) C15—C16—C17—C12 0.0 (2)
C7—C8—C9—C10 0.7 (3) C13—C12—C17—C16 −2.2 (2)
C6—C5—C10—C9 0.4 (2) C11—C12—C17—C16 176.94 (14)
C4—C5—C10—C9 −179.17 (15)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N—H0A···Cl1i 0.88 2.89 3.6491 (12) 145
C14—H14A···O2ii 0.95 2.40 3.2517 (19) 149

Symmetry codes: (i) x−1, y, z; (ii) −x−1, y+1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: AT2690).

References

  1. Bakare, O., Ashendel, C. L., Peng, H., Zalkow, L. H. & Burgess, E. M. (2003). Bioorg. Med. Chem.11, 3165–3170. [DOI] [PubMed]
  2. Copeland, R. L., Das, J. R., Bakare, O., Enwerem, N. M., Berhe, S., Hillaire, K., White, D., Beyene, D., Kassim, O. O. & Kanaan, Y. M. (2007). Anticancer Res.27, 1537–1546. [PubMed]
  3. Gowda, B. T., Kožíšek, J., Tokarčík, M. & Fuess, H. (2008). Acta Cryst. E64, o987. [DOI] [PMC free article] [PubMed]
  4. Gowda, B. T., Tokarčík, M., Kožíšek, J., Sowmya, B. P. & Fuess, H. (2008). Acta Cryst. E64, o950. [DOI] [PMC free article] [PubMed]
  5. Huang, L., Chang, F., Lee, K., Wang, J., Teng, C. & Kuo, S. (2005). Bioorg. Med. Chem.6, 2261–2269. [DOI] [PubMed]
  6. Lien, J., Huang, L., Wang, J., Teng, C., Lee, K. & Kuo, S. (1997). Bioorg. Med. Chem.5, 2111–2120. [DOI] [PubMed]
  7. Oosten, E. M. van, Lough, A. J. & Vasdev, N. (2008). Acta Cryst. E64, o1005. [DOI] [PMC free article] [PubMed]
  8. Oxford Diffraction (2007). CrysAlis CCD and CrysAlis RED (including SCALE3 ABSPACK). Oxford Diffraction Ltd, Abingdon, England.
  9. Rubin-Preminger, J. M., Win, T., Granot, Y. & Bittner, S. (2004). Z. Kristallogr. New Cryst. Struct.219, 323–324.
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  11. Shen, Q., Yu, S.-Q., Hu, B.-B. & Lu, P. (2008). Acta Cryst. E64, o996. [DOI] [PMC free article] [PubMed]
  12. Win, T., Yerushalmi, S. & Bittner, S. (2005). Synthesis, pp. 1631–1634.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808040993/at2690sup1.cif

e-65-00o64-sup1.cif (18.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808040993/at2690Isup2.hkl

e-65-00o64-Isup2.hkl (237.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES