Abstract
In the title compound, C13H9NO3, the dihedral angle between the benzene and maleimide rings is 64.1 (2)°. In the crystal structure, molecules interact via C—H⋯O interactions.
Related literature
N-substituted maleimides can be used in free-radical-initiated polymerization processes upon exposure to light, see: Chang et al. (1999 ▶); Hoyle et al. (1999 ▶). For related structures, see: Moreno-Fuquen et al. (2006 ▶, 2008a
▶,b
▶). For the effect of benzene ring substituents on the dihedral angle between the benzene and imidic rings, see: Miller et al. (2000 ▶).
Experimental
Crystal data
C13H9NO3
M r = 227.21
Monoclinic,
a = 9.0428 (18) Å
b = 11.491 (2) Å
c = 11.492 (2) Å
β = 102.00 (3)°
V = 1168.0 (4) Å3
Z = 4
Mo Kα radiation
μ = 0.09 mm−1
T = 292 (3) K
0.30 × 0.26 × 0.20 mm
Data collection
Bruker SMART 1K CCD area-detector diffractometer
Absorption correction: multi-scan (SADABS; Bruker, 2000 ▶) T min = 0.968, T max = 0.981
6107 measured reflections
2053 independent reflections
1368 reflections with I > 2σ(I)
R int = 0.088
Refinement
R[F 2 > 2σ(F 2)] = 0.072
wR(F 2) = 0.224
S = 1.35
2053 reflections
154 parameters
H-atom parameters constrained
Δρmax = 0.48 e Å−3
Δρmin = −0.43 e Å−3
Data collection: SMART (Bruker, 2000 ▶); cell refinement: SAINT (Bruker, 2000 ▶); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 ▶); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.
Supplementary Material
Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808035885/hg2436sup1.cif
Structure factors: contains datablocks I. DOI: 10.1107/S1600536808035885/hg2436Isup2.hkl
Additional supplementary materials: crystallographic information; 3D view; checkCIF report
Table 1. Hydrogen-bond geometry (Å, °).
D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A |
---|---|---|---|---|
C2—H2⋯O2i | 0.93 | 2.50 | 3.179 (12) | 130 |
C9—H9⋯O2ii | 0.93 | 2.18 | 3.103 (10) | 169 |
Symmetry codes: (i) ; (ii)
.
Acknowledgments
This work was supported by the Natural Science Foundation of China (No. 50873093).
supplementary crystallographic information
Comment
N-substituted maleimides can be used in free radical initiated polymerization process upon exposure to light (Chang, et al., 1999; Hoyle, et al.,1999). N-(3-Nitrophenyl)maleimide (Moreno-Fuquen, et al., 2006), N-(3-Chlorophenyl)maleimide (Moreno-Fuquen, et al., 2008a) and N-(4-Chlorophenyl)maleimide (Moreno-Fuquen, et al., 2008b) has reported and could be taken as a reference to compare with the structural characteristics of (I).
Perspective view of (I), showing the atomic numbering scheme, can be seen in Fig. 1. The dihedral angle between the benzene and imidic rings influences on the polymerization process, and subsituents of the benzene ring can effect the value of dihedral angle (Miller et al. 2000). In the title compound (I), the dihedral angle between the benzene and maleimide is 64.1 (2)°. This angle is 46.46 (5) ° for N-(3-Chlorophenyl)maleimide (Moreno-Fuquen, et al., 2008:1) and 47.54 (9) ° for N-(4-Chlorophenyl)maleimide (Moreno-Fuquen, et al., 2008:2). The crystal structure of (I) is stabilized by weak intermolecular C—H···O hydrogen bonds.
Experimental
The title compound was prepared by taking equimolar quantities of 4-(prop-2-ynyloxy)benzenamine (14.7 g, 0.1 mol) and maleic anhydride (9.8 g, 0.1 mol) in 80 ml benzene and 20 ml DMF and refluxing 4 h in the presence of p-toluenesulfonic acid. The reaction product was poured into 500 ml ice water, yellow precipitate product was formed. The crude product was recrystalled from ethanol. Yield 90%. 1H NMR (300 MHz, DMSO-d6) δ 7.30, 7.13(d, aromatic), 7.02(s, 2H, maleimide), 4.85(s, 2H, –H2–), 3.14(s, 1H, ≡-H). Analysis. calculated for C13H9NO3: C 68.72, H 3.99, N 6.16%. Found: C 68.39, H 4.02, N 6.21%. The product added in 50 ml ethanol and crystals of (I) suitable for X-ray analysis were obtained by slow evaporation at room temperature.
Refinement
The H atoms bound to C atoms were placed in caculated positions with C—H = 0.93 Å and included in the refinement with Uiso(H) = 1.2Ueq(C).
Figures
Fig. 1.
A view of complex (I), showing 30% probability displacement ellipsoids and the atom-numbering scheme.
Crystal data
C13H9NO3 | F(000) = 472 |
Mr = 227.21 | Dx = 1.292 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2yn | Cell parameters from 2053 reflections |
a = 9.0428 (18) Å | θ = 2.5–25.0° |
b = 11.491 (2) Å | µ = 0.09 mm−1 |
c = 11.492 (2) Å | T = 292 K |
β = 102.00 (3)° | Block, yellow |
V = 1168.0 (4) Å3 | 0.30 × 0.26 × 0.20 mm |
Z = 4 |
Data collection
Bruker SMART 1K CCD area-detector diffractometer | 2053 independent reflections |
Radiation source: fine-focus sealed tube | 1368 reflections with I > 2σ(I) |
graphite | Rint = 0.088 |
phi and ω scans | θmax = 25.0°, θmin = 2.5° |
Absorption correction: multi-scan (SADABS; Bruker, 2000) | h = −10→10 |
Tmin = 0.968, Tmax = 0.981 | k = −13→10 |
6107 measured reflections | l = −12→12 |
Refinement
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.072 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.224 | H-atom parameters constrained |
S = 1.35 | w = 1/[σ2(Fo2) + (0.0733P)2 + 3.1182P] where P = (Fo2 + 2Fc2)/3 |
2053 reflections | (Δ/σ)max < 0.001 |
154 parameters | Δρmax = 0.49 e Å−3 |
0 restraints | Δρmin = −0.43 e Å−3 |
Special details
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
x | y | z | Uiso*/Ueq | ||
C3 | 0.2361 (11) | 0.5326 (8) | 0.6724 (8) | 0.088 (4) | |
H3 | 0.2039 | 0.5394 | 0.5904 | 0.106* | |
O3 | 0.0885 (6) | 0.1202 (5) | 1.2278 (5) | 0.0694 (19) | |
C5 | 0.1785 (7) | 0.3652 (6) | 0.9539 (6) | 0.052 (2) | |
O1 | 0.3695 (7) | 0.5806 (5) | 0.9313 (5) | 0.083 (2) | |
O2 | 0.0834 (8) | 0.3616 (6) | 0.7229 (6) | 0.094 (3) | |
C8 | 0.1352 (8) | 0.1986 (7) | 1.1335 (6) | 0.048 (2) | |
C9 | 0.2725 (8) | 0.2328 (7) | 1.0900 (6) | 0.054 (2) | |
H9 | 0.3586 | 0.1960 | 1.1323 | 0.065* | |
C10 | 0.3076 (7) | 0.3112 (7) | 0.9958 (6) | 0.053 (2) | |
H10 | 0.3992 | 0.3200 | 0.9720 | 0.064* | |
C7 | 0.0089 (9) | 0.2487 (8) | 1.0914 (8) | 0.066 (3) | |
H7 | −0.0834 | 0.2363 | 1.1129 | 0.079* | |
C6 | 0.0429 (7) | 0.3326 (7) | 0.9989 (7) | 0.059 (2) | |
H6 | −0.0424 | 0.3736 | 0.9613 | 0.071* | |
C1 | 0.3150 (9) | 0.5431 (8) | 0.8502 (7) | 0.062 (3) | |
C4 | 0.1745 (10) | 0.4410 (7) | 0.7421 (7) | 0.070 (3) | |
C11 | 0.2080 (11) | 0.0481 (9) | 1.2619 (8) | 0.077 (3) | |
H11A | 0.1862 | 0.0016 | 1.3268 | 0.093* | |
H11B | 0.2935 | 0.0971 | 1.2958 | 0.093* | |
C2 | 0.3280 (11) | 0.5958 (8) | 0.7276 (8) | 0.078 (3) | |
H2 | 0.3866 | 0.6553 | 0.7059 | 0.094* | |
C12 | 0.2667 (12) | −0.0409 (10) | 1.1735 (10) | 0.081 (3) | |
C13 | 0.3170 (15) | −0.1138 (12) | 1.1030 (12) | 0.113 (5) | |
H13 | 0.3526 | −0.1656 | 1.0530 | 0.136* | |
N1 | 0.2168 (7) | 0.4475 (6) | 0.8557 (5) | 0.0543 (19) |
Atomic displacement parameters (Å2)
U11 | U22 | U33 | U12 | U13 | U23 | |
C3 | 0.115 (8) | 0.070 (6) | 0.055 (6) | 0.005 (6) | −0.038 (6) | 0.016 (5) |
O3 | 0.068 (4) | 0.078 (4) | 0.052 (3) | 0.000 (3) | −0.010 (3) | 0.011 (3) |
C5 | 0.053 (4) | 0.053 (5) | 0.038 (4) | −0.006 (4) | −0.017 (4) | −0.001 (4) |
O1 | 0.093 (5) | 0.077 (4) | 0.058 (4) | −0.021 (4) | −0.038 (4) | −0.001 (3) |
O2 | 0.107 (5) | 0.068 (4) | 0.074 (4) | −0.006 (4) | −0.056 (4) | 0.003 (3) |
C8 | 0.064 (5) | 0.049 (5) | 0.026 (4) | −0.009 (4) | −0.003 (4) | 0.009 (3) |
C9 | 0.059 (5) | 0.054 (5) | 0.039 (4) | −0.021 (4) | −0.010 (4) | 0.016 (4) |
C10 | 0.039 (4) | 0.068 (5) | 0.045 (5) | −0.006 (4) | −0.007 (4) | −0.009 (4) |
C7 | 0.045 (5) | 0.075 (6) | 0.069 (6) | −0.013 (4) | −0.006 (4) | 0.001 (5) |
C6 | 0.057 (5) | 0.051 (5) | 0.058 (5) | −0.002 (4) | −0.014 (4) | 0.007 (4) |
C1 | 0.057 (5) | 0.069 (6) | 0.047 (5) | 0.002 (4) | −0.018 (4) | −0.003 (5) |
C4 | 0.082 (6) | 0.052 (5) | 0.054 (5) | 0.013 (5) | −0.034 (5) | −0.002 (4) |
C11 | 0.082 (6) | 0.096 (8) | 0.042 (5) | −0.010 (6) | −0.012 (5) | 0.036 (5) |
C2 | 0.088 (7) | 0.058 (6) | 0.072 (6) | −0.011 (5) | −0.020 (5) | 0.016 (5) |
C12 | 0.085 (7) | 0.083 (8) | 0.068 (7) | 0.019 (6) | 0.000 (6) | 0.028 (6) |
C13 | 0.134 (11) | 0.098 (9) | 0.092 (9) | 0.023 (9) | −0.014 (8) | 0.019 (8) |
N1 | 0.051 (4) | 0.064 (4) | 0.036 (4) | 0.004 (3) | −0.018 (3) | 0.000 (3) |
Geometric parameters (Å, °)
C3—C2 | 1.184 (11) | C10—H10 | 0.9300 |
C3—C4 | 1.498 (9) | C7—C6 | 1.513 (11) |
C3—H3 | 0.9300 | C7—H7 | 0.9300 |
O3—C11 | 1.353 (10) | C6—H6 | 0.9300 |
O3—C8 | 1.535 (9) | C1—N1 | 1.422 (11) |
C5—C10 | 1.321 (7) | C1—C2 | 1.560 (12) |
C5—C6 | 1.475 (8) | C4—N1 | 1.284 (10) |
C5—N1 | 1.565 (10) | C11—C12 | 1.608 (16) |
O1—C1 | 1.052 (9) | C11—H11A | 0.9700 |
O2—C4 | 1.218 (10) | C11—H11B | 0.9700 |
C8—C7 | 1.281 (10) | C2—H2 | 0.9300 |
C8—C9 | 1.484 (8) | C12—C13 | 1.311 (16) |
C9—C10 | 1.493 (10) | C13—H13 | 0.9300 |
C9—H9 | 0.9300 | ||
C2—C3—C4 | 116.3 (8) | C7—C6—H6 | 112.3 |
C2—C3—H3 | 121.9 | O1—C1—N1 | 117.3 (9) |
C4—C3—H3 | 121.9 | O1—C1—C2 | 122.1 (9) |
C11—O3—C8 | 104.1 (6) | N1—C1—C2 | 120.4 (7) |
C10—C5—C6 | 119.3 (7) | O2—C4—N1 | 106.0 (8) |
C10—C5—N1 | 103.6 (6) | O2—C4—C3 | 137.9 (8) |
C6—C5—N1 | 136.9 (6) | N1—C4—C3 | 115.9 (8) |
C7—C8—C9 | 119.8 (7) | O3—C11—C12 | 123.7 (7) |
C7—C8—O3 | 100.1 (7) | O3—C11—H11A | 106.4 |
C9—C8—O3 | 139.9 (6) | C12—C11—H11A | 106.4 |
C8—C9—C10 | 136.3 (6) | O3—C11—H11B | 106.4 |
C8—C9—H9 | 111.9 | C12—C11—H11B | 106.4 |
C10—C9—H9 | 111.9 | H11A—C11—H11B | 106.5 |
C5—C10—C9 | 104.1 (6) | C3—C2—C1 | 93.9 (8) |
C5—C10—H10 | 128.0 | C3—C2—H2 | 133.0 |
C9—C10—H10 | 128.0 | C1—C2—H2 | 133.0 |
C8—C7—C6 | 104.9 (7) | C13—C12—C11 | 178.9 (10) |
C8—C7—H7 | 127.6 | C12—C13—H13 | 180.0 |
C6—C7—H7 | 127.6 | C4—N1—C1 | 93.2 (7) |
C5—C6—C7 | 135.5 (6) | C4—N1—C5 | 129.4 (7) |
C5—C6—H6 | 112.3 | C1—N1—C5 | 137.1 (5) |
C11—O3—C8—C7 | 169.0 (7) | C4—C3—C2—C1 | −4.4 (12) |
C11—O3—C8—C9 | −16.0 (12) | O1—C1—C2—C3 | −172.0 (11) |
C7—C8—C9—C10 | −5.8 (14) | N1—C1—C2—C3 | 2.3 (12) |
O3—C8—C9—C10 | 179.9 (8) | O2—C4—N1—C1 | −179.3 (7) |
C6—C5—C10—C9 | −4.1 (9) | C3—C4—N1—C1 | −3.7 (9) |
N1—C5—C10—C9 | 179.7 (5) | O2—C4—N1—C5 | 6.4 (12) |
C8—C9—C10—C5 | 6.6 (12) | C3—C4—N1—C5 | −178.0 (7) |
C9—C8—C7—C6 | 1.8 (10) | O1—C1—N1—C4 | 175.7 (9) |
O3—C8—C7—C6 | 178.1 (6) | C2—C1—N1—C4 | 1.2 (10) |
C10—C5—C6—C7 | 2.5 (14) | O1—C1—N1—C5 | −10.7 (15) |
N1—C5—C6—C7 | 177.1 (8) | C2—C1—N1—C5 | 174.7 (8) |
C8—C7—C6—C5 | −0.8 (13) | C10—C5—N1—C4 | 109.2 (9) |
C2—C3—C4—O2 | −179.8 (12) | C6—C5—N1—C4 | −65.9 (13) |
C2—C3—C4—N1 | 6.5 (14) | C10—C5—N1—C1 | −62.5 (11) |
C8—O3—C11—C12 | −61.5 (10) | C6—C5—N1—C1 | 122.4 (10) |
Hydrogen-bond geometry (Å, °)
D—H···A | D—H | H···A | D···A | D—H···A |
C2—H2···O2i | 0.93 | 2.50 | 3.179 (12) | 130 |
C9—H9···O2ii | 0.93 | 2.18 | 3.103 (10) | 169 |
Symmetry codes: (i) −x+1/2, y+1/2, −z+3/2; (ii) x+1/2, −y+1/2, z+1/2.
Footnotes
Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG2436).
References
- Bruker (2000). SMART, SAINT and SADABS, Bruker AXS Inc., Madison, Wisconsin, USA.
- Chang, J. Y., Kim, T. J., Han, M. J. & Chae, K. H. (1999). Polymer, 40, 4049–4054.
- Hoyle, C. E., Viswanathan, K., Clark, S. C., Miller, C. W., Nguyen, C., Jonsson, S. & Shao, L. (1999). Macromolecules, 32, 2793–2795.
- Miller, C. W., Hoyle, C. E., Valente, E. J., Zobkowski, J. D. & Jönsson, E. S. (2000). J. Chem. Crystallogr.30, 563–571.
- Moreno-Fuquen, R., Pardo-Botero, Z. & Ellena, J. (2008a). Acta Cryst. E64, o932. [DOI] [PMC free article] [PubMed]
- Moreno-Fuquen, R., Pardo-Botero, Z. & Ellena, J. (2008b). Acta Cryst. E64, o1991. [DOI] [PMC free article] [PubMed]
- Moreno-Fuquen, R., Valencia, H., Pardo, Z. D., D’Vries, R. & Kennedy, A. R. (2006). Acta Cryst. E62, o2734–o2735.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808035885/hg2436sup1.cif
Structure factors: contains datablocks I. DOI: 10.1107/S1600536808035885/hg2436Isup2.hkl
Additional supplementary materials: crystallographic information; 3D view; checkCIF report