Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Dec 10;65(Pt 1):o71. doi: 10.1107/S1600536808041007

4-(3-Eth­oxy-4-hydroxy­styr­yl)-1-methyl­pyridinium tosyl­ate monohydrate

S Murugavel a, A SubbiahPandi b,*, C Srikanth c, S Kalainathan c
PMCID: PMC2967981  PMID: 21581710

Abstract

In the title compound, C16H18NO2 +·C7H7O3S·H2O, the dihedral angle between the pyridyl and benzene rings of the pyridinium cation is 0.2 (1)°. The benzene ring of the tosyl­ate anion makes a dihedral angle of 4.8 (2)° with the best mean plane of the pyridinium cation. The pyridinium cation and the tosyl­ate anion are hydrogen bonded to the water mol­ecule, and the crystal packing is further stabilized by inter­molecular C—H⋯O and π–π inter­actions [centroid–centroid separations of 3.648 (3) and 3.594 (2) Å.

Related literature

For a related structure, see: Zhang et al. (1997). For mol­ecular compounds with non-linear optical properties, see: Bosshard et al. (1995); Nalwa & Miyata (1997); Lee & Kim (1999).graphic file with name e-65-00o71-scheme1.jpg

Experimental

Crystal data

  • C16H18NO2 +·C7H7O3S·H2O

  • M r = 445.52

  • Monoclinic, Inline graphic

  • a = 13.7700 (4) Å

  • b = 9.7125 (2) Å

  • c = 17.3394 (5) Å

  • β = 104.059 (2)°

  • V = 2249.53 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.18 mm−1

  • T = 293 (2) K

  • 0.25 × 0.17 × 0.16 mm

Data collection

  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.961, T max = 0.975

  • 48719 measured reflections

  • 5310 independent reflections

  • 3610 reflections with I > 2σ(I)

  • R int = 0.034

Refinement

  • R[F 2 > 2σ(F 2)] = 0.057

  • wR(F 2) = 0.187

  • S = 1.03

  • 5310 reflections

  • 290 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.72 e Å−3

  • Δρmin = −0.30 e Å−3

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2003).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808041007/lx2079sup1.cif

e-65-00o71-sup1.cif (22.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808041007/lx2079Isup2.hkl

e-65-00o71-Isup2.hkl (260KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1O⋯O6i 0.82 1.82 2.632 (3) 170
O6—H6OB⋯O3 0.85 (1) 2.36 (2) 2.692 (3) 103.9 (19)
O6—H6OA⋯O5ii 0.86 (3) 1.98 (3) 2.832 (4) 169 (3)
C4—H4⋯O4 0.93 2.53 3.426 (3) 161
C5—H5⋯O1iii 0.93 2.59 3.217 (3) 125

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

SM and ASP thank Dr Babu Varghese, SAIF, IIT, Chennai, India, for the X-ray data collection.

supplementary crystallographic information

Comment

The synthesis and study of molecular compounds with non linear optical (NLO) properties has attracted much attention, because such materials hold promise for applications in optoelectronic and photonic devices (Bosshard et al., 1995; Nalwa & Miyata, 1997). In order to create efficient quadratic (second–order) NLO materials, both the molecular and bulk properties must be optimized. Within the diverse range of existing NLO compounds, styrylpyridinium salts are particularly attractive for device applications (Lee & Kim, 1999). Against this background, and in order to obtain detailed information on molecular conformations in the solid state, X-ray studies of the title compounds (I) have been carried out.

X-Ray analysis confirms the molecular structure and atom connectivity for (I), as illustrated in Fig. 1. The dihedral angle between the pyridyl and phenyl rings of the pyridinium cation is 0.2 (1)°. The benzene ring of the tosylate anion makes a dihedral angle of 4.8 (2)° with the best mean plane of the pyridinium cation. The bond lengths N1–C7, C13–O25 and C14–O26 are normal and comparable with the corresponding values observed in the related structure. (Zhang et al., 1997)

The presence of water molecules in the crystal structure of (I) leads to a three dimensional network of hydrogen bonds invoving water, the tosylate anion and the pyridinium cation (Table 1). In addition, the crystal packing is further stabilized by intermolecular C—H···O (Table.1) and π—π interactions with a Cg1···Cg1i and a Cg1—Cg2ii separation of 3.648 (3) Å and 3.594 Å, respectively (Fig. 2; Cg1 and Cg2 are the centroids of the N/C1-C5 pyridine ring and C17-C22 benzene ring, respectively, symmetry code as in Fig. 2).

Experimental

HEST (4-[2-(4-hydroxy-3-ethoxyphenyl) ethenyl]-1-methylpyridinium 4-tolylsulfonate hydrate ) was synthesized by the condensation of 4-methyl N-methyl pyridinum Tosylate, which is prepared from 4-Picoline (Merck, 99%) , methyl toluene sulphonate (Merck, 98%) and 4-hydroxy-3-ethoxy-Benzaldehyde (High Media, 98%) in the presence of piperidine as catalyst. The step by step synthesis procedure of HEST is as follows: Picoline (10.31 ml, 0.105 mol %) and methyl toluene sulphonate (15.88 ml, 0.105 mol %) is added into toluene (200ml) (Merck, 98%) is taken in a round bottom flask (500 ml) of Dean-stark apparatus. This mixture is heated until formation of white salt, which is insoluble in toluene. While boiling Di-methyl formamide (DMF) (Merck, 98%) is added until the white salt are dissolved. Now 4-hydroxy-3-ethoxy-Benzaldehyde (0.105 mol %) is added. Few drops of Piperidine also added as catalyst. The mixture is then refluxed with Dean-stark trap to remove water. After more than equivalent amount of water is collected, the reactants are cooled to room temperature and synthesized orange color HEST is collected. To prevent the absorption of water from the atmosphere, the synthesized material is placed in the oven at 100°C for 1 hour. Purified single crystals suitable for X-ray diffraction was obtained by successive recrystallization process of a methonal solution.

Refinement

H atoms of the water were located in a difference fourier map, and were refined with distance restraints of O—H = 0.85(0.01) Å and H···H = 1.25(0.01) Å and all other H atoms were fixed geometrically and allowed to ride on their parent atoms, with C—H = 0.93–0.98 Å with Uiso(H)= 1.5Ueq (methyl H) and 1.2Ueq (for other H atoms).

Figures

Fig. 1.

Fig. 1.

The molecular structure of title compound showing 30% probability displacement ellipsoids.

Fig. 2.

Fig. 2.

2. π—π interactions (dotted lines) in the title compound. Cg denotes ring centroid. [Symmetry code: (i) -x+1, -y, -z+1; (ii) x, y-1, z; (iii) x, y+1, z; (iv) -x+1, -y+1, -z+1.]

Crystal data

C16H18NO2+·C7H7O3S·H2O F(000) = 944
Mr = 445.52 Dx = 1.315 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 5318 reflections
a = 13.7700 (4) Å θ = 2.2–27.8°
b = 9.7125 (2) Å µ = 0.18 mm1
c = 17.3394 (5) Å T = 293 K
β = 104.059 (2)° Block, orange
V = 2249.53 (10) Å3 0.25 × 0.17 × 0.16 mm
Z = 4

Data collection

Bruker APEXII CCD area-detector diffractometer 5310 independent reflections
Radiation source: fine-focus sealed tube 3610 reflections with I > 2σ(I)
graphite Rint = 0.034
Detector resolution: 10 pixels mm-1 θmax = 27.8°, θmin = 2.2°
ω scans h = −18→18
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) k = −12→12
Tmin = 0.961, Tmax = 0.975 l = −22→22
48719 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057 Hydrogen site location: difference Fourier map
wR(F2) = 0.187 H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0893P)2 + 1.1253P] where P = (Fo2 + 2Fc2)/3
5310 reflections (Δ/σ)max < 0.001
290 parameters Δρmax = 0.72 e Å3
3 restraints Δρmin = −0.30 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S 0.72581 (5) 0.48936 (6) 0.59449 (4) 0.0646 (2)
O1 0.92457 (12) 0.27591 (17) 0.20090 (10) 0.0589 (4)
H1O 0.9248 0.2213 0.1649 0.088*
O2 0.91242 (13) 0.42417 (17) 0.32358 (10) 0.0604 (4)
O3 0.62950 (16) 0.5133 (2) 0.61455 (17) 0.0998 (8)
O4 0.78329 (17) 0.3912 (2) 0.64784 (16) 0.0958 (8)
O5 0.7116 (2) 0.4619 (2) 0.51204 (15) 0.1024 (8)
O6 0.44858 (19) 0.3921 (3) 0.58789 (15) 0.0855 (6)
H6OA 0.399 (2) 0.427 (3) 0.5530 (19) 0.16 (2)*
H6OB 0.4608 (18) 0.4682 (16) 0.6128 (13) 0.050 (7)*
N 0.55785 (13) −0.0896 (2) 0.63677 (11) 0.0514 (5)
C1 0.56915 (16) −0.1585 (2) 0.57240 (14) 0.0515 (5)
H1 0.5445 −0.2477 0.5633 0.062*
C2 0.61625 (16) −0.0993 (2) 0.52038 (13) 0.0484 (5)
H2 0.6230 −0.1481 0.4758 0.058*
C3 0.65447 (15) 0.0336 (2) 0.53320 (13) 0.0477 (5)
C4 0.64007 (18) 0.1008 (2) 0.60023 (15) 0.0565 (6)
H4 0.6637 0.1902 0.6110 0.068*
C5 0.59222 (18) 0.0384 (3) 0.65010 (15) 0.0571 (6)
H5 0.5832 0.0856 0.6945 0.069*
C6 0.5107 (2) −0.1567 (4) 0.69445 (17) 0.0814 (9)
H6A 0.5615 −0.1870 0.7395 0.122*
H6B 0.4723 −0.2345 0.6699 0.122*
H6C 0.4673 −0.0924 0.7116 0.122*
C7 0.70733 (17) 0.1044 (2) 0.48149 (14) 0.0547 (6)
H7 0.7258 0.1957 0.4928 0.066*
C8 0.73041 (18) 0.0465 (3) 0.41971 (15) 0.0578 (6)
H8 0.7107 −0.0447 0.4098 0.069*
C9 0.78346 (17) 0.1085 (3) 0.36470 (14) 0.0545 (6)
C10 0.79432 (19) 0.0317 (3) 0.30061 (16) 0.0616 (6)
H10 0.7700 −0.0580 0.2944 0.074*
C11 0.84097 (18) 0.0864 (3) 0.24558 (15) 0.0581 (6)
H11 0.8466 0.0335 0.2022 0.070*
C12 0.87921 (16) 0.2176 (2) 0.25382 (13) 0.0486 (5)
C13 0.87119 (17) 0.2968 (2) 0.31965 (13) 0.0503 (5)
C14 0.82272 (17) 0.2423 (3) 0.37394 (13) 0.0541 (5)
H14 0.8161 0.2952 0.4171 0.065*
C15 0.9068 (2) 0.5061 (3) 0.39048 (17) 0.0719 (8)
H15A 0.9420 0.4613 0.4393 0.086*
H15B 0.8376 0.5191 0.3922 0.086*
C16 0.9543 (3) 0.6418 (4) 0.3816 (2) 0.1043 (13)
H16A 0.9518 0.6998 0.4259 0.156*
H16B 0.9189 0.6851 0.3332 0.156*
H16C 1.0228 0.6276 0.3801 0.156*
C17 0.78797 (16) 0.6487 (2) 0.61343 (14) 0.0476 (5)
C18 0.8387 (2) 0.7012 (3) 0.56113 (17) 0.0652 (7)
H18 0.8428 0.6513 0.5163 0.078*
C19 0.8839 (2) 0.8288 (3) 0.5755 (2) 0.0784 (9)
H19 0.9184 0.8637 0.5398 0.094*
C20 0.8792 (2) 0.9043 (3) 0.6399 (2) 0.0763 (9)
C21 0.8292 (2) 0.8499 (3) 0.69306 (18) 0.0749 (9)
H21 0.8265 0.8996 0.7383 0.090*
C22 0.78351 (19) 0.7234 (3) 0.67996 (14) 0.0592 (6)
H22 0.7496 0.6884 0.7160 0.071*
C23 0.9251 (3) 1.0473 (3) 0.6528 (3) 0.133 (2)
H23A 0.9759 1.0560 0.6237 0.200*
H23B 0.9543 1.0611 0.7084 0.200*
H23C 0.8740 1.1151 0.6343 0.200*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S 0.0666 (4) 0.0422 (3) 0.0802 (5) −0.0071 (3) 0.0084 (3) 0.0070 (3)
O1 0.0698 (10) 0.0593 (9) 0.0532 (9) −0.0040 (8) 0.0257 (8) −0.0002 (7)
O2 0.0762 (11) 0.0561 (9) 0.0528 (9) −0.0154 (8) 0.0230 (8) −0.0076 (7)
O3 0.0602 (12) 0.0806 (14) 0.156 (2) −0.0146 (10) 0.0220 (13) 0.0169 (14)
O4 0.0885 (14) 0.0532 (11) 0.133 (2) 0.0007 (10) 0.0020 (13) 0.0301 (12)
O5 0.140 (2) 0.0646 (12) 0.0956 (17) −0.0186 (13) 0.0156 (15) −0.0220 (12)
O6 0.0890 (16) 0.0924 (16) 0.0747 (14) −0.0218 (13) 0.0189 (12) 0.0171 (13)
N 0.0447 (10) 0.0609 (11) 0.0485 (11) 0.0068 (8) 0.0112 (8) 0.0105 (9)
C1 0.0492 (12) 0.0417 (10) 0.0614 (14) 0.0022 (9) 0.0090 (10) 0.0038 (10)
C2 0.0493 (11) 0.0485 (11) 0.0476 (12) 0.0041 (9) 0.0124 (9) −0.0017 (9)
C3 0.0425 (11) 0.0489 (11) 0.0498 (12) 0.0038 (9) 0.0074 (9) 0.0055 (9)
C4 0.0575 (13) 0.0452 (11) 0.0642 (15) 0.0007 (10) 0.0101 (11) −0.0056 (10)
C5 0.0561 (13) 0.0622 (14) 0.0523 (13) 0.0067 (11) 0.0121 (11) −0.0102 (11)
C6 0.0753 (18) 0.109 (2) 0.0651 (18) 0.0012 (17) 0.0274 (14) 0.0299 (16)
C7 0.0548 (13) 0.0484 (11) 0.0597 (14) −0.0057 (10) 0.0116 (11) 0.0003 (10)
C8 0.0580 (14) 0.0521 (12) 0.0621 (15) −0.0083 (10) 0.0120 (11) −0.0001 (11)
C9 0.0495 (12) 0.0610 (13) 0.0528 (13) −0.0070 (10) 0.0125 (10) 0.0046 (10)
C10 0.0634 (15) 0.0551 (13) 0.0673 (16) −0.0108 (11) 0.0179 (12) −0.0025 (11)
C11 0.0614 (14) 0.0585 (13) 0.0563 (14) −0.0046 (11) 0.0181 (11) −0.0078 (11)
C12 0.0448 (11) 0.0556 (12) 0.0451 (12) 0.0015 (9) 0.0105 (9) 0.0028 (9)
C13 0.0499 (12) 0.0525 (12) 0.0463 (12) −0.0036 (9) 0.0072 (9) −0.0002 (9)
C14 0.0550 (13) 0.0624 (13) 0.0453 (12) −0.0024 (10) 0.0131 (10) −0.0032 (10)
C15 0.094 (2) 0.0704 (16) 0.0586 (15) −0.0280 (14) 0.0324 (14) −0.0164 (12)
C16 0.163 (3) 0.077 (2) 0.098 (2) −0.052 (2) 0.079 (2) −0.0346 (18)
C17 0.0463 (11) 0.0381 (10) 0.0570 (13) 0.0030 (8) 0.0101 (9) 0.0011 (9)
C18 0.0755 (16) 0.0488 (12) 0.0830 (18) −0.0006 (11) 0.0420 (14) −0.0084 (12)
C19 0.0653 (16) 0.0535 (14) 0.127 (3) −0.0044 (12) 0.0430 (17) 0.0067 (16)
C20 0.0515 (14) 0.0437 (12) 0.119 (3) 0.0022 (11) −0.0074 (15) −0.0091 (15)
C21 0.0733 (17) 0.0632 (15) 0.0715 (18) 0.0183 (14) −0.0146 (14) −0.0236 (14)
C22 0.0603 (14) 0.0656 (14) 0.0489 (13) 0.0136 (11) 0.0076 (11) 0.0035 (11)
C23 0.083 (2) 0.0527 (17) 0.234 (6) −0.0123 (16) −0.021 (3) −0.023 (3)

Geometric parameters (Å, °)

S—O5 1.420 (3) C9—C10 1.377 (4)
S—O4 1.427 (2) C9—C14 1.401 (3)
S—O3 1.469 (2) C10—C11 1.380 (3)
S—C17 1.760 (2) C10—H10 0.9300
O1—C12 1.353 (3) C11—C12 1.373 (3)
O1—H1O 0.8200 C11—H11 0.9300
O2—C13 1.356 (3) C12—C13 1.403 (3)
O2—C15 1.424 (3) C13—C14 1.385 (3)
O6—H6OA 0.86 (3) C14—H14 0.9300
O6—H6OB 0.85 (1) C15—C16 1.496 (4)
N—C5 1.330 (3) C15—H15A 0.9700
N—C1 1.342 (3) C15—H15B 0.9700
N—C6 1.471 (3) C16—H16A 0.9600
C1—C2 1.360 (3) C16—H16B 0.9600
C1—H1 0.9300 C16—H16C 0.9600
C2—C3 1.391 (3) C17—C18 1.371 (3)
C2—H2 0.9300 C17—C22 1.377 (3)
C3—C4 1.389 (3) C18—C19 1.382 (4)
C3—C7 1.457 (3) C18—H18 0.9300
C4—C5 1.351 (4) C19—C20 1.351 (5)
C4—H4 0.9300 C19—H19 0.9300
C5—H5 0.9300 C20—C21 1.383 (5)
C6—H6A 0.9600 C20—C23 1.519 (4)
C6—H6B 0.9600 C21—C22 1.373 (4)
C6—H6C 0.9600 C21—H21 0.9300
C7—C8 1.315 (3) C22—H22 0.9300
C7—H7 0.9300 C23—H23A 0.9600
C8—C9 1.465 (3) C23—H23B 0.9600
C8—H8 0.9300 C23—H23C 0.9600
O5—S—O4 116.5 (2) C10—C11—H11 119.4
O5—S—O3 110.9 (2) O1—C12—C11 123.1 (2)
O4—S—O3 110.04 (15) O1—C12—C13 117.6 (2)
O5—S—C17 107.1 (1) C11—C12—C13 119.3 (2)
O4—S—C17 107.4 (1) O2—C13—C14 125.4 (2)
O3—S—C17 104.1 (1) O2—C13—C12 115.2 (2)
C12—O1—H1O 109.5 C14—C13—C12 119.3 (2)
C13—O2—C15 116.5 (2) C13—C14—C9 120.9 (2)
H6OA—O6—H6OB 92 (1) C13—C14—H14 119.6
C5—N—C1 120.1 (2) C9—C14—H14 119.6
C5—N—C6 119.6 (2) O2—C15—C16 107.3 (2)
C1—N—C6 120.2 (2) O2—C15—H15A 110.3
N—C1—C2 120.7 (2) C16—C15—H15A 110.3
N—C1—H1 119.6 O2—C15—H15B 110.3
C2—C1—H1 119.6 C16—C15—H15B 110.3
C1—C2—C3 120.6 (2) H15A—C15—H15B 108.5
C1—C2—H2 119.7 C15—C16—H16A 109.5
C3—C2—H2 119.7 C15—C16—H16B 109.5
C4—C3—C2 116.4 (2) H16A—C16—H16B 109.5
C4—C3—C7 119.2 (2) C15—C16—H16C 109.5
C2—C3—C7 124.5 (2) H16A—C16—H16C 109.5
C5—C4—C3 121.0 (2) H16B—C16—H16C 109.5
C5—C4—H4 119.5 C18—C17—C22 119.4 (2)
C3—C4—H4 119.5 C18—C17—S 120.46 (18)
N—C5—C4 121.1 (2) C22—C17—S 120.07 (19)
N—C5—H5 119.5 C17—C18—C19 119.6 (3)
C4—C5—H5 119.5 C17—C18—H18 120.2
N—C6—H6A 109.5 C19—C18—H18 120.2
N—C6—H6B 109.5 C20—C19—C18 121.8 (3)
H6A—C6—H6B 109.5 C20—C19—H19 119.1
N—C6—H6C 109.5 C18—C19—H19 119.1
H6A—C6—H6C 109.5 C19—C20—C21 118.3 (2)
H6B—C6—H6C 109.5 C19—C20—C23 121.1 (4)
C8—C7—C3 123.7 (2) C21—C20—C23 120.6 (3)
C8—C7—H7 118.2 C22—C21—C20 121.0 (3)
C3—C7—H7 118.2 C22—C21—H21 119.5
C7—C8—C9 127.7 (2) C20—C21—H21 119.5
C7—C8—H8 116.1 C21—C22—C17 119.9 (3)
C9—C8—H8 116.1 C21—C22—H22 120.1
C10—C9—C14 118.7 (2) C17—C22—H22 120.1
C10—C9—C8 118.1 (2) C20—C23—H23A 109.5
C14—C9—C8 123.1 (2) C20—C23—H23B 109.5
C9—C10—C11 120.6 (2) H23A—C23—H23B 109.5
C9—C10—H10 119.7 C20—C23—H23C 109.5
C11—C10—H10 119.7 H23A—C23—H23C 109.5
C12—C11—C10 121.1 (2) H23B—C23—H23C 109.5
C12—C11—H11 119.4
C5—N—C1—C2 0.5 (3) O1—C12—C13—C14 178.16 (19)
C6—N—C1—C2 −177.3 (2) C11—C12—C13—C14 −1.6 (3)
N—C1—C2—C3 0.5 (3) O2—C13—C14—C9 −179.4 (2)
C1—C2—C3—C4 −1.1 (3) C12—C13—C14—C9 1.2 (3)
C1—C2—C3—C7 179.0 (2) C10—C9—C14—C13 0.3 (4)
C2—C3—C4—C5 0.6 (3) C8—C9—C14—C13 −179.2 (2)
C7—C3—C4—C5 −179.4 (2) C13—O2—C15—C16 −178.7 (3)
C1—N—C5—C4 −0.9 (3) O5—S—C17—C18 −19.3 (2)
C6—N—C5—C4 176.9 (2) O4—S—C17—C18 106.6 (2)
C3—C4—C5—N 0.3 (4) O3—S—C17—C18 −136.8 (2)
C4—C3—C7—C8 175.4 (2) O5—S—C17—C22 158.9 (2)
C2—C3—C7—C8 −4.7 (4) O4—S—C17—C22 −75.3 (2)
C3—C7—C8—C9 −179.7 (2) O3—S—C17—C22 41.4 (2)
C7—C8—C9—C10 −175.9 (2) C22—C17—C18—C19 −0.6 (4)
C7—C8—C9—C14 3.5 (4) S—C17—C18—C19 177.6 (2)
C14—C9—C10—C11 −1.4 (4) C17—C18—C19—C20 −0.2 (4)
C8—C9—C10—C11 178.0 (2) C18—C19—C20—C21 1.2 (4)
C9—C10—C11—C12 1.1 (4) C18—C19—C20—C23 −177.1 (3)
C10—C11—C12—O1 −179.3 (2) C19—C20—C21—C22 −1.3 (4)
C10—C11—C12—C13 0.4 (4) C23—C20—C21—C22 176.9 (3)
C15—O2—C13—C14 1.6 (4) C20—C21—C22—C17 0.6 (4)
C15—O2—C13—C12 −179.0 (2) C18—C17—C22—C21 0.4 (4)
O1—C12—C13—O2 −1.3 (3) S—C17—C22—C21 −177.75 (18)
C11—C12—C13—O2 179.0 (2)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O1—H1O···O6i 0.82 1.82 2.632 (3) 170
O6—H6OB···O3 0.85 (1) 2.36 (2) 2.692 (3) 104 (2)
O6—H6OA···O5ii 0.86 (3) 1.98 (3) 2.832 (4) 169 (3)
C4—H4···O4 0.93 2.53 3.426 (3) 161
C5—H5···O1iii 0.93 2.59 3.217 (3) 125

Symmetry codes: (i) x+1/2, −y+1/2, z−1/2; (ii) −x+1, −y+1, −z+1; (iii) x−1/2, −y+1/2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LX2079).

References

  1. Bosshard, Ch., Sutter, K., Pretre, Ph., Hulliger, J., Florsheimer, M., Kaatz, P. & Gunter, P. (1995). Organic Nonlinear Optical Materials. Advances in Nonlinear Optics, Vol. 1. Amsterdam: Gordon & Breach.
  2. Bruker (2004). APEX2, SAINT and XPREP Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  4. Lee, K.-S. & Kim, O.-K. (1999). Photonics Sci. News, 4, 9-20.
  5. Nalwa, H. S. & Miyata, S. (1997). Editors. Nonlinear Optics of Organic Molecules and Polymers Boca Raton: CRC Press.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  7. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  8. Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
  9. Zhang, D.-C., Zhang, T.-Z., Zhang, Y.-Q., Fei, Z.-H. & Yu, K.-B. (1997). Acta Cryst. C53, 364–365.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808041007/lx2079sup1.cif

e-65-00o71-sup1.cif (22.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808041007/lx2079Isup2.hkl

e-65-00o71-Isup2.hkl (260KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES