Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Dec 10;65(Pt 1):o75. doi: 10.1107/S1600536808038087

N 2,N 2′-Bis(2-hydroxy­benzyl­idene)-2,2′-bipyridyl-3,3′-dicarbohydrazide

Shao-Bin Miao a, Lu-Lu Zang a, Ya-Wei Fan a, Bao-Ming Ji a,*
PMCID: PMC2967985  PMID: 21581714

Abstract

In the title compound, C26H20N6O4, the two aroylhydrazone side groups exist as diastereomeres, both in the keto form in the crystal structure. The aroylhydrazone units support the mol­ecular conformation through an intra­molecular N—H⋯O hydrogen bond. Two mol­ecules are connected into a centrosymmetric dimer by inter­molecular N—H⋯N hydrogen bonds. These dimers are connected into chains along the a axis by inter­molecular O—H⋯O hydrogen bonds. The combination of these hydrogen bonds results in layers in the bc plane. The layers are further linked by weak C—H⋯π contacts to form a three-dimensional network structure.

Related literature

For syntheses, structures and ligand conformations of AgI complexes with flexible N,N′-di(2-pyrid­yl)adipoamide ligands, see: Chen et al. (2007). For palladium-catalysed allylic alkyl­ation using chiral hydrazones as ligands, see: Mino et al. (2001). For the biological activity of hydrazones and their metal complexes, see: Rodriguez-Argüelles et al. (2004); Wiley & Clevenger (1962). For coordinated hydrazone ligands as nucleophiles, see: Wood et al. (2004). For a new fluorescent rhodamine hydrazone chemosensor for CuII, see: Xiang et al. (2006).graphic file with name e-65-00o75-scheme1.jpg

Experimental

Crystal data

  • C26H20N6O4

  • M r = 480.48

  • Triclinic, Inline graphic

  • a = 9.4251 (13) Å

  • b = 11.7642 (16) Å

  • c = 12.0384 (16) Å

  • α = 98.842 (2)°

  • β = 108.895 (2)°

  • γ = 104.591 (2)°

  • V = 1181.1 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 293 (2) K

  • 0.37 × 0.25 × 0.10 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.956, T max = 0.991

  • 8593 measured reflections

  • 4281 independent reflections

  • 3119 reflections with I > 2σ(I)

  • R int = 0.021

Refinement

  • R[F 2 > 2σ(F 2)] = 0.041

  • wR(F 2) = 0.111

  • S = 1.02

  • 4281 reflections

  • 327 parameters

  • H-atom parameters constrained

  • Δρmax = 0.46 e Å−3

  • Δρmin = −0.19 e Å−3

Data collection: SMART (Bruker, 1999); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808038087/si2129sup1.cif

e-65-00o75-sup1.cif (23.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808038087/si2129Isup2.hkl

e-65-00o75-Isup2.hkl (209.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg3 and Cg4 are the centroids of the benzene rings C1–C6 and C21–C26, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
N5—H5D⋯O2 0.86 2.15 2.962 (2) 157
N2—H2D⋯N4i 0.86 2.17 2.985 (2) 159
O4—H4⋯O3ii 0.82 1.92 2.736 (2) 172
O1—H1⋯N1 0.82 1.95 2.663 (2) 145
C10—H10⋯Cg3iii 0.93 2.76 3.458 (2) 133
C11—H11⋯Cg4iv 0.93 2.73 3.588 (2) 154

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Acknowledgments

This work was supported by the Natural Science Foundation of Henan (grant No. 082300420040).

supplementary crystallographic information

Comment

Hydrazones and their metal complexes have gained a special attraction due to their biological activity (Rodriguez-Argüelles et al., 2004; Wiley & Clevenger, 1962). These compounds have also been proposed as chemosensors (Xiang et al., 2006), catalysts (Mino et al., 2001) and nucleophiles (Wood et al., 2004). Hydrazone ligands can coordinate with metal ions to produce stable metal complexes owing to their facile keto–enol tautomerism.

As shown in Fig. 1, two aroylhydrazone units are situated on both sides of the 2,2'-dipyridyl linking group which can decrease the steric hindrance among the pyridyl rings. The two aroylhydrazone side groups exist as diastereomeres, both in the keto form in the crystal structure. The aroylhydrazone units support the molecular conformation through an intramolecular N—H···O hydrogen bond (Table 1).

The dihedral angle between two pyridine rings of the 2,2'-dipyridyl group is 105.26 (2)°. The bond distances and angles are all in normal ranges. The distances of the C8—O2, C19—O3, N1—C7 and N6—C20 are 1.226 (2), 1.229 (2), 1.279 (2) and 1.280 (2) Å, respectively, which have the features of typical C═O and C═N double bonds (Chen et al., 2007). This confirms that the compound exists in the keto form.

A pair of intermolecular N—H···N hydrogen bonds connect two adjacent molecules into dimers via inversion centres (Fig. 2). These dimers are connected into chains along a axis by intermolecular O4—H4···O3 hydrogen bonds. The combination of both hydrogen bonds generate layers which extend along the b+c direction (Fig. 3). The layers are linked by weak C—H···π contacts (Table 1) to form a three-dimensional network structure. Cg3 and Cg4 are the centroids of the benzene rings C1–C6 and C21–C26, respectively. There is another intramolecular hydrogen bond, O1—H1···N1, which results from the planar geometry in the H1–O1–C1–C6–C7–N1 ring system (Table 1).

Experimental

A mixture of 2,2'-bipyridyl-3,3'-diformylhydrazide (0.272 g, 1 mmol), salicylaldehyde (2.5 mmol, 0.26 ml) and a drop of glacial acetic acid in ethanol (20 ml) was stirred at reflux temperature for 3 h. The solution was filtered and the filtrate was set aside to be crystallized. Yellow crystals suitable for the X-ray diffraction study were obtained after 5 d.

Refinement

All of the non-hydrogen atoms were refined anisotropically. The hydrogen atoms were assigned with common isotropic displacement factors Uiso(H) = 1.2Ueq(C,N) and 1.5Ueq(O), respectively, and included in the final refinement by using geometrical restraints, with C—H, N—H and O—H distances of 0.93, 0.86 and 0.82 Å.

Figures

Fig. 1.

Fig. 1.

ORTEP drawing (30% probability displacement ellipsoids) of a single molecule of the title compound.

Fig. 2.

Fig. 2.

Unit cell packing diagram for the title compound. Hydrogen bonds are shown with dashed lines.

Fig. 3.

Fig. 3.

A section of the layered structure viewed down the a axis.

Crystal data

C26H20N6O4 Z = 2
Mr = 480.48 F(000) = 500
Triclinic, P1 Dx = 1.351 Mg m3
a = 9.4251 (13) Å Mo Kα radiation, λ = 0.71073 Å
b = 11.7642 (16) Å Cell parameters from 2245 reflections
c = 12.0384 (16) Å θ = 2.4–23.8°
α = 98.842 (2)° µ = 0.10 mm1
β = 108.895 (2)° T = 293 K
γ = 104.591 (2)° Block, yellow
V = 1181.1 (3) Å3 0.37 × 0.25 × 0.10 mm

Data collection

Bruker SMART CCD area-detector diffractometer 4281 independent reflections
Radiation source: fine-focus sealed tube 3119 reflections with I > 2σ(I)
graphite Rint = 0.021
φ and ω scans θmax = 25.5°, θmin = 2.4°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) h = −11→11
Tmin = 0.956, Tmax = 0.991 k = −14→14
8593 measured reflections l = −14→14

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.111 H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0497P)2 + 0.2276P] where P = (Fo2 + 2Fc2)/3
4281 reflections (Δ/σ)max < 0.001
327 parameters Δρmax = 0.46 e Å3
0 restraints Δρmin = −0.19 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.91934 (18) 0.72851 (13) 0.61871 (15) 0.0628 (4)
H1 0.8614 0.7551 0.5702 0.094*
O2 0.54744 (16) 0.76483 (12) 0.33652 (13) 0.0531 (4)
O3 0.03313 (14) 0.63641 (12) 0.00365 (11) 0.0452 (3)
O4 0.76743 (15) 0.68107 (15) 0.01770 (12) 0.0586 (4)
H4 0.8519 0.6749 0.0170 0.088*
N1 0.81685 (17) 0.90089 (14) 0.53315 (14) 0.0400 (4)
N2 0.70967 (17) 0.94879 (14) 0.46351 (13) 0.0399 (4)
H2D 0.7280 1.0261 0.4795 0.048*
N3 0.20060 (19) 0.93570 (15) 0.21026 (14) 0.0458 (4)
N4 0.23711 (19) 0.79268 (14) 0.42134 (13) 0.0413 (4)
N5 0.29163 (16) 0.65006 (13) 0.09343 (13) 0.0370 (4)
H5D 0.3693 0.6630 0.1609 0.044*
N6 0.31480 (17) 0.62971 (13) −0.01446 (13) 0.0355 (4)
C1 1.0361 (2) 0.82252 (18) 0.70788 (18) 0.0448 (5)
C2 1.1409 (3) 0.7965 (2) 0.8036 (2) 0.0579 (6)
H2 1.1310 0.7160 0.8046 0.070*
C3 1.2592 (3) 0.8884 (2) 0.8969 (2) 0.0645 (7)
H3 1.3274 0.8694 0.9612 0.077*
C4 1.2783 (3) 1.0079 (2) 0.8970 (2) 0.0607 (6)
H4A 1.3601 1.0695 0.9598 0.073*
C5 1.1754 (2) 1.03568 (19) 0.80321 (18) 0.0488 (5)
H5 1.1873 1.1167 0.8038 0.059*
C6 1.0531 (2) 0.94455 (17) 0.70696 (16) 0.0383 (4)
C7 0.9401 (2) 0.97971 (17) 0.61685 (16) 0.0385 (4)
H7 0.9575 1.0617 0.6199 0.046*
C8 0.5773 (2) 0.87486 (17) 0.37108 (16) 0.0375 (4)
C9 0.4686 (2) 0.93978 (16) 0.31156 (15) 0.0348 (4)
C10 0.5244 (2) 1.05037 (17) 0.28697 (17) 0.0423 (5)
H10 0.6328 1.0889 0.3118 0.051*
C11 0.4186 (3) 1.10226 (19) 0.22581 (19) 0.0509 (5)
H11 0.4541 1.1773 0.2107 0.061*
C12 0.2594 (3) 1.04164 (19) 0.18726 (19) 0.0518 (5)
H12 0.1885 1.0759 0.1428 0.062*
C13 0.3044 (2) 0.88770 (16) 0.27334 (15) 0.0340 (4)
C14 0.22940 (19) 0.77607 (16) 0.30632 (15) 0.0332 (4)
C15 0.1631 (2) 0.69644 (19) 0.45134 (18) 0.0488 (5)
H15 0.1702 0.7059 0.5313 0.059*
C16 0.0775 (2) 0.58480 (19) 0.37127 (18) 0.0514 (5)
H16 0.0274 0.5208 0.3964 0.062*
C17 0.0671 (2) 0.56921 (18) 0.25305 (18) 0.0459 (5)
H17 0.0075 0.4950 0.1963 0.055*
C18 0.14672 (19) 0.66555 (16) 0.21967 (15) 0.0334 (4)
C19 0.1497 (2) 0.65002 (15) 0.09467 (16) 0.0333 (4)
C20 0.4561 (2) 0.63447 (16) −0.00311 (16) 0.0359 (4)
H20 0.5342 0.6531 0.0740 0.043*
C21 0.4959 (2) 0.61090 (16) −0.11018 (16) 0.0358 (4)
C22 0.3798 (2) 0.5622 (2) −0.22627 (19) 0.0532 (5)
H22 0.2738 0.5441 −0.2363 0.064*
C23 0.4176 (3) 0.5402 (2) −0.3266 (2) 0.0697 (7)
H23 0.3381 0.5068 −0.4036 0.084*
C24 0.5753 (3) 0.5682 (2) −0.3121 (2) 0.0662 (7)
H24 0.6017 0.5546 −0.3798 0.079*
C25 0.6928 (2) 0.6157 (2) −0.1985 (2) 0.0522 (5)
H25 0.7985 0.6345 −0.1897 0.063*
C26 0.6548 (2) 0.63589 (16) −0.09660 (17) 0.0385 (4)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0565 (10) 0.0435 (9) 0.0758 (11) 0.0107 (7) 0.0136 (8) 0.0147 (8)
O2 0.0472 (8) 0.0374 (8) 0.0581 (9) 0.0142 (6) 0.0026 (7) 0.0033 (7)
O3 0.0298 (7) 0.0663 (9) 0.0356 (7) 0.0159 (6) 0.0098 (6) 0.0071 (6)
O4 0.0326 (7) 0.0918 (12) 0.0490 (9) 0.0242 (8) 0.0154 (7) 0.0044 (8)
N1 0.0359 (9) 0.0441 (9) 0.0378 (9) 0.0142 (7) 0.0103 (7) 0.0102 (7)
N2 0.0383 (9) 0.0361 (8) 0.0381 (9) 0.0111 (7) 0.0074 (7) 0.0068 (7)
N3 0.0452 (9) 0.0520 (10) 0.0467 (10) 0.0221 (8) 0.0181 (8) 0.0186 (8)
N4 0.0500 (10) 0.0399 (9) 0.0317 (8) 0.0123 (7) 0.0153 (7) 0.0064 (7)
N5 0.0292 (8) 0.0504 (9) 0.0291 (8) 0.0124 (7) 0.0101 (6) 0.0065 (7)
N6 0.0335 (8) 0.0437 (9) 0.0326 (8) 0.0135 (7) 0.0161 (7) 0.0095 (7)
C1 0.0385 (11) 0.0479 (12) 0.0504 (12) 0.0120 (9) 0.0201 (10) 0.0154 (10)
C2 0.0535 (13) 0.0611 (14) 0.0708 (15) 0.0250 (12) 0.0247 (12) 0.0357 (13)
C3 0.0524 (14) 0.0918 (19) 0.0571 (15) 0.0310 (14) 0.0166 (12) 0.0371 (14)
C4 0.0484 (13) 0.0759 (17) 0.0448 (13) 0.0172 (12) 0.0056 (10) 0.0110 (12)
C5 0.0435 (11) 0.0510 (12) 0.0456 (12) 0.0153 (10) 0.0109 (10) 0.0081 (10)
C6 0.0333 (10) 0.0468 (11) 0.0373 (10) 0.0147 (8) 0.0151 (8) 0.0114 (9)
C7 0.0376 (10) 0.0400 (10) 0.0377 (10) 0.0116 (9) 0.0152 (9) 0.0086 (9)
C8 0.0348 (10) 0.0388 (11) 0.0364 (10) 0.0099 (8) 0.0130 (8) 0.0066 (9)
C9 0.0375 (10) 0.0352 (10) 0.0293 (9) 0.0102 (8) 0.0122 (8) 0.0055 (8)
C10 0.0417 (11) 0.0403 (11) 0.0392 (11) 0.0068 (9) 0.0136 (9) 0.0091 (9)
C11 0.0616 (14) 0.0428 (11) 0.0529 (13) 0.0168 (10) 0.0239 (11) 0.0208 (10)
C12 0.0580 (14) 0.0552 (13) 0.0560 (13) 0.0299 (11) 0.0241 (11) 0.0279 (11)
C13 0.0376 (10) 0.0346 (9) 0.0303 (9) 0.0135 (8) 0.0137 (8) 0.0049 (8)
C14 0.0284 (9) 0.0380 (10) 0.0325 (10) 0.0119 (8) 0.0105 (8) 0.0075 (8)
C15 0.0593 (13) 0.0515 (12) 0.0343 (11) 0.0107 (10) 0.0214 (10) 0.0114 (10)
C16 0.0588 (13) 0.0451 (12) 0.0437 (12) −0.0009 (10) 0.0259 (10) 0.0083 (10)
C17 0.0441 (11) 0.0420 (11) 0.0416 (11) −0.0001 (9) 0.0187 (9) 0.0008 (9)
C18 0.0278 (9) 0.0383 (10) 0.0328 (10) 0.0097 (8) 0.0125 (8) 0.0050 (8)
C19 0.0290 (9) 0.0350 (9) 0.0329 (10) 0.0078 (7) 0.0118 (8) 0.0042 (8)
C20 0.0317 (10) 0.0380 (10) 0.0393 (10) 0.0133 (8) 0.0133 (8) 0.0103 (8)
C21 0.0352 (10) 0.0385 (10) 0.0405 (10) 0.0172 (8) 0.0180 (8) 0.0121 (8)
C22 0.0364 (11) 0.0719 (15) 0.0470 (12) 0.0183 (10) 0.0143 (10) 0.0058 (11)
C23 0.0567 (14) 0.107 (2) 0.0413 (13) 0.0328 (14) 0.0159 (11) 0.0042 (13)
C24 0.0662 (16) 0.102 (2) 0.0461 (13) 0.0416 (14) 0.0315 (12) 0.0171 (13)
C25 0.0450 (12) 0.0731 (15) 0.0542 (13) 0.0296 (11) 0.0289 (11) 0.0208 (11)
C26 0.0369 (10) 0.0415 (10) 0.0422 (11) 0.0184 (8) 0.0170 (9) 0.0108 (9)

Geometric parameters (Å, °)

O1—C1 1.358 (2) C8—C9 1.494 (2)
O1—H1 0.8200 C9—C10 1.390 (2)
O2—C8 1.226 (2) C9—C13 1.398 (2)
O3—C19 1.229 (2) C10—C11 1.371 (3)
O4—C26 1.359 (2) C10—H10 0.9300
O4—H4 0.8200 C11—C12 1.372 (3)
N1—C7 1.279 (2) C11—H11 0.9300
N1—N2 1.387 (2) C12—H12 0.9300
N2—C8 1.345 (2) C13—C14 1.502 (2)
N2—H2D 0.8600 C14—C18 1.390 (2)
N3—C13 1.335 (2) C15—C16 1.371 (3)
N3—C12 1.340 (2) C15—H15 0.9300
N4—C15 1.338 (2) C16—C17 1.374 (3)
N4—C14 1.344 (2) C16—H16 0.9300
N5—C19 1.343 (2) C17—C18 1.384 (2)
N5—N6 1.3807 (19) C17—H17 0.9300
N5—H5D 0.8600 C18—C19 1.498 (2)
N6—C20 1.280 (2) C20—C21 1.461 (2)
C1—C2 1.386 (3) C20—H20 0.9300
C1—C6 1.406 (3) C21—C22 1.388 (3)
C2—C3 1.372 (3) C21—C26 1.401 (2)
C2—H2 0.9300 C22—C23 1.372 (3)
C3—C4 1.371 (3) C22—H22 0.9300
C3—H3 0.9300 C23—C24 1.383 (3)
C4—C5 1.373 (3) C23—H23 0.9300
C4—H4A 0.9300 C24—C25 1.372 (3)
C5—C6 1.397 (3) C24—H24 0.9300
C5—H5 0.9300 C25—C26 1.388 (3)
C6—C7 1.447 (2) C25—H25 0.9300
C7—H7 0.9300
C1—O1—H1 109.5 N3—C12—C11 123.45 (19)
C26—O4—H4 109.5 N3—C12—H12 118.3
C7—N1—N2 114.91 (16) C11—C12—H12 118.3
C8—N2—N1 120.29 (15) N3—C13—C9 123.44 (16)
C8—N2—H2D 119.9 N3—C13—C14 113.82 (15)
N1—N2—H2D 119.9 C9—C13—C14 122.65 (15)
C13—N3—C12 117.24 (17) N4—C14—C18 122.77 (16)
C15—N4—C14 117.06 (16) N4—C14—C13 115.72 (15)
C19—N5—N6 121.03 (14) C18—C14—C13 121.31 (15)
C19—N5—H5D 119.5 N4—C15—C16 123.90 (18)
N6—N5—H5D 119.5 N4—C15—H15 118.1
C20—N6—N5 114.90 (14) C16—C15—H15 118.1
O1—C1—C2 118.42 (19) C15—C16—C17 118.71 (18)
O1—C1—C6 122.38 (17) C15—C16—H16 120.6
C2—C1—C6 119.20 (19) C17—C16—H16 120.6
C3—C2—C1 120.6 (2) C16—C17—C18 119.02 (18)
C3—C2—H2 119.7 C16—C17—H17 120.5
C1—C2—H2 119.7 C18—C17—H17 120.5
C4—C3—C2 121.0 (2) C17—C18—C14 118.48 (16)
C4—C3—H3 119.5 C17—C18—C19 120.92 (16)
C2—C3—H3 119.5 C14—C18—C19 120.56 (15)
C3—C4—C5 119.4 (2) O3—C19—N5 124.31 (16)
C3—C4—H4A 120.3 O3—C19—C18 123.07 (15)
C5—C4—H4A 120.3 N5—C19—C18 112.61 (15)
C4—C5—C6 121.3 (2) N6—C20—C21 120.59 (16)
C4—C5—H5 119.4 N6—C20—H20 119.7
C6—C5—H5 119.4 C21—C20—H20 119.7
C5—C6—C1 118.61 (17) C22—C21—C26 118.43 (17)
C5—C6—C7 118.48 (18) C22—C21—C20 121.77 (16)
C1—C6—C7 122.62 (17) C26—C21—C20 119.79 (16)
N1—C7—C6 121.70 (18) C23—C22—C21 121.58 (19)
N1—C7—H7 119.2 C23—C22—H22 119.2
C6—C7—H7 119.2 C21—C22—H22 119.2
O2—C8—N2 124.11 (17) C22—C23—C24 119.3 (2)
O2—C8—C9 122.32 (16) C22—C23—H23 120.3
N2—C8—C9 113.56 (16) C24—C23—H23 120.3
C10—C9—C13 117.33 (16) C25—C24—C23 120.5 (2)
C10—C9—C8 122.09 (17) C25—C24—H24 119.7
C13—C9—C8 120.52 (16) C23—C24—H24 119.7
C11—C10—C9 119.50 (18) C24—C25—C26 120.28 (19)
C11—C10—H10 120.3 C24—C25—H25 119.9
C9—C10—H10 120.3 C26—C25—H25 119.9
C10—C11—C12 118.93 (18) O4—C26—C25 122.21 (17)
C10—C11—H11 120.5 O4—C26—C21 117.96 (16)
C12—C11—H11 120.5 C25—C26—C21 119.82 (18)
C7—N1—N2—C8 178.55 (16) C15—N4—C14—C13 176.13 (16)
C19—N5—N6—C20 178.69 (16) N3—C13—C14—N4 −101.74 (18)
O1—C1—C2—C3 −178.8 (2) C9—C13—C14—N4 74.8 (2)
C6—C1—C2—C3 0.5 (3) N3—C13—C14—C18 73.3 (2)
C1—C2—C3—C4 −1.1 (4) C9—C13—C14—C18 −110.1 (2)
C2—C3—C4—C5 1.3 (4) C14—N4—C15—C16 −2.0 (3)
C3—C4—C5—C6 −1.0 (3) N4—C15—C16—C17 0.6 (3)
C4—C5—C6—C1 0.4 (3) C15—C16—C17—C18 1.7 (3)
C4—C5—C6—C7 174.46 (19) C16—C17—C18—C14 −2.4 (3)
O1—C1—C6—C5 179.16 (18) C16—C17—C18—C19 175.03 (17)
C2—C1—C6—C5 −0.1 (3) N4—C14—C18—C17 1.0 (3)
O1—C1—C6—C7 5.3 (3) C13—C14—C18—C17 −173.68 (16)
C2—C1—C6—C7 −173.96 (18) N4—C14—C18—C19 −176.47 (16)
N2—N1—C7—C6 171.98 (15) C13—C14—C18—C19 8.9 (2)
C5—C6—C7—N1 −173.13 (17) N6—N5—C19—O3 −2.5 (3)
C1—C6—C7—N1 0.7 (3) N6—N5—C19—C18 176.19 (14)
N1—N2—C8—O2 −5.5 (3) C17—C18—C19—O3 71.2 (2)
N1—N2—C8—C9 175.49 (14) C14—C18—C19—O3 −111.4 (2)
O2—C8—C9—C10 −137.05 (19) C17—C18—C19—N5 −107.46 (19)
N2—C8—C9—C10 42.0 (2) C14—C18—C19—N5 69.9 (2)
O2—C8—C9—C13 40.0 (3) N5—N6—C20—C21 178.09 (14)
N2—C8—C9—C13 −140.91 (17) N6—C20—C21—C22 −11.5 (3)
C13—C9—C10—C11 −1.0 (3) N6—C20—C21—C26 169.45 (17)
C8—C9—C10—C11 176.21 (17) C26—C21—C22—C23 −1.0 (3)
C9—C10—C11—C12 −1.8 (3) C20—C21—C22—C23 −180.0 (2)
C13—N3—C12—C11 −0.5 (3) C21—C22—C23—C24 −0.6 (4)
C10—C11—C12—N3 2.7 (3) C22—C23—C24—C25 1.0 (4)
C12—N3—C13—C9 −2.6 (3) C23—C24—C25—C26 0.3 (4)
C12—N3—C13—C14 173.98 (16) C24—C25—C26—O4 179.0 (2)
C10—C9—C13—N3 3.3 (3) C24—C25—C26—C21 −1.9 (3)
C8—C9—C13—N3 −173.91 (16) C22—C21—C26—O4 −178.60 (18)
C10—C9—C13—C14 −172.94 (16) C20—C21—C26—O4 0.4 (3)
C8—C9—C13—C14 9.8 (3) C22—C21—C26—C25 2.2 (3)
C15—N4—C14—C18 1.2 (3) C20—C21—C26—C25 −178.76 (17)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N5—H5D···O2 0.86 2.15 2.962 (2) 157
N2—H2D···N4i 0.86 2.17 2.985 (2) 159
O4—H4···O3ii 0.82 1.92 2.736 (2) 172
O1—H1···N1 0.82 1.95 2.663 (2) 145
C10—H10···Cg3iii 0.93 2.76 3.458 (2) 133
C11—H11···Cg4iv 0.93 2.73 3.588 (2) 154

Symmetry codes: (i) −x+1, −y+2, −z+1; (ii) x+1, y, z; (iii) −x+2, −y+2, −z+1; (iv) −x+1, −y+2, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SI2129).

References

  1. Bruker (1999). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Chen, H. C., Hu, H. L., Chan, Z. K., Yeh, C. W., Jia, H. W., Wu, C. P., Chen, J. D. & Wang, J. C. (2007). Cryst. Growth Des.7, 698–704.
  3. Mino, T., Shiotsuki, M., Yamamoto, N., Suenaga, T., Sakamoto, M., Fujita, T. & Yamashita, M. (2001). J. Org. Chem.66, 1795–1797. [DOI] [PubMed]
  4. Rodriguez-Argüelles, M. C., Ferrari, M. B., Bisceglie, F., Pelizzi, C., Pelosi, G., Pinelli, S. & Sassi, M. (2004). J. Inorg. Biochem.98, 313–321. [DOI] [PubMed]
  5. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  7. Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
  8. Wiley, R. H. & Clevenger, R. L. (1962). J. Med. Chem.5, 1367–1371. [DOI] [PubMed]
  9. Wood, A., Aris, W. & Brook, D. J. R. (2004). Inorg. Chem.43, 8355–8360. [DOI] [PubMed]
  10. Xiang, Y., Tong, A. J., Jin, P. Y. & Ju, Y. (2006). Org. Lett.8, 2863–2866. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808038087/si2129sup1.cif

e-65-00o75-sup1.cif (23.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808038087/si2129Isup2.hkl

e-65-00o75-Isup2.hkl (209.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES