Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Dec 10;65(Pt 1):o76–o77. doi: 10.1107/S1600536808040671

(E)-2-[4-(Dimethyl­amino)styr­yl]-1-methyl­quinolinium 4-methyl­benzene­sulfonate monohydrate1

Thawanrat Kobkeatthawin a, Thitipone Suwunwong a, Suchada Chantrapromma a,*, Hoong-Kun Fun b,
PMCID: PMC2967986  PMID: 21581715

Abstract

In the title compound, C20H21N2 +·C7H7O3S·H2O, the cation is essentially planar, as indicated by the dihedral angle of 2.79 (13)° between the quinolinium and the dimethylaminophenyl rings, and exists in the E configuration. The π-conjugated planes of the cation and the anion are inclined to each other at a dihedral angle of 66.95 (12)°. The cation is linked to the anion through C—H⋯O hydrogen bonds and the anion is further linked with the water mol­ecule by O—H⋯O hydrogen bonds, forming a three-mol­ecule unit. These units are arranged in a face-to-face manner into a ribbon-like structure along the b axis. The ribbons are stacked along the c axis. The crystal structure is further stabilized by C—H⋯π inter­actions involving the dimethyl­amino­phenyl and methyl­phenyl rings. A π–π inter­action with a centroid–centroid distance of 3.6074 (19) Å is also observed.

Related literature

For bond-length data, see: Allen et al. (1987). For details of hydrogen-bond motifs, see: Bernstein et al. (1995). For background to NLO materials research, see: Dittrich et al. (2003); Nogi et al. (2000); Ogawa et al. (2008); Otero et al. (2002); Sato et al. (1999); Weir et al. (2003); Yang et al. (2007). For related structures, see, for example: Adachi et al. (1999); Chantrapromma et al. (2008); Ogawa et al. (2008); Rahman et al. (2003).graphic file with name e-65-00o76-scheme1.jpg

Experimental

Crystal data

  • C20H21N2 +·C7H7O3S·H2O

  • M r = 478.60

  • Triclinic, Inline graphic

  • a = 10.9739 (5) Å

  • b = 11.1789 (5) Å

  • c = 11.1923 (9) Å

  • α = 97.133 (5)°

  • β = 100.322 (5)°

  • γ = 117.021 (3)°

  • V = 1169.78 (13) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.18 mm−1

  • T = 100.0 (1) K

  • 0.24 × 0.19 × 0.08 mm

Data collection

  • Bruker SMART APEX2 CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005) T min = 0.958, T max = 0.986

  • 17557 measured reflections

  • 5390 independent reflections

  • 3272 reflections with I > 2σ(I)

  • R int = 0.073

Refinement

  • R[F 2 > 2σ(F 2)] = 0.072

  • wR(F 2) = 0.203

  • S = 1.05

  • 5390 reflections

  • 311 parameters

  • H-atom parameters constrained

  • Δρmax = 0.60 e Å−3

  • Δρmin = −0.47 e Å−3

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808040671/is2369sup1.cif

e-65-00o76-sup1.cif (24.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808040671/is2369Isup2.hkl

e-65-00o76-Isup2.hkl (263.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1W⋯O2 0.90 1.96 2.839 (4) 164
O1W—H2W⋯O1i 0.88 2.01 2.893 (3) 179
C10—H10A⋯O3ii 0.93 2.57 3.460 (4) 162
C17—H17A⋯O3ii 0.93 2.45 3.344 (5) 163
C20—H20A⋯O3ii 0.96 2.33 3.204 (6) 151
C20—H20B⋯O1iii 0.96 2.49 3.388 (4) 156
C26—H26A⋯O2 0.93 2.51 2.884 (5) 104
C7—H7ACg4iv 0.93 2.97 3.615 (4) 128
C23—H23ACg3v 0.93 2.82 3.594 (4) 141

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic. Cg3 and Cg4 are the centroids of the C12–C17 and C21–C26 rings, respectively.

Acknowledgments

The authors thank the Prince of Songkla University for a research grant and also Universiti Sains Malaysia for the Research University Golden Goose grant No. 1001/PFIZIK/811012.

supplementary crystallographic information

Comment

There has been considerable interest in organic nonlinear optical materials that could be used for applications including telecommunications, optical computing and optical data storage. Organic crystals with extensive conjugated π systems are attractive candidates for nonlinear optic (NLO) studies because of their large hyperpolariability (β) and ease of preparation (Dittrich et al., 2003; Nogi et al., 2000; Ogawa et al., 2008; Otero et al., 2002; Sato et al., 1999; Weir et al., 2003; Yang et al., 2007). 4-N,N-dimethylamino-4'-N'-methyl-stilbazolium tosylate (DAST) is one of the promising NLO material (Adachi et al., 1999). Previous studies (Dittrich et al., 2003; Nogi et al., 2000; Sato et al., 1999) have shown that the DAST and its analogues exhibit second-order non-linear optical properties. One strategy to enhance the hyperpolariability of the cations is by elongation of its π-conjugation system. Based on these previous studies, we have synthesized the title compound which was designed by increasing the π-conjugate system with the replacement of the cationic pyridinium ring that is present in DAST by the quinolinium ring. The crystal structure of the title compound is reported in this study.

Figure 1 shows the asymmetric unit of the title compound (I) which consists of a C20H21N2+ cation, a C7H7O3S- anion and one H2O molecule. The cation exists in the E configuration with respect to the C10═C11 double bond [1.328 (4) Å, the corresponding value is 1.357 (2) Å in Chantrapromma et al., 2008]. The cation molecule is essentially planar as indicated by the dihedral angle between the quinolinium and the dimethylaminophenyl rings being 2.79 (13)° [9.26 (6) ° in Chantrapromma et al., 2008] with the torsion angles C8–C9–C10–C11 = -0.1 (5)° and C10–C11–C12–C17 = 2.4 (5)°. Both methyl groups of dimethylamino moiety are slightly twisted from the mean plane of the attached C12–C17 ring as indicated by the torsion angle C18—N2–C15–C14 = 3.6 (4)° and C19–N2–C15–C16 = -6.3 (4)°. The relative arrangement of cation and anion is shown by the interplanar angles between the mean plane of the 4-methylphenyl ring and those of the quinolinium and dimethylaminophenyl system which are 67.80 (13) and 67.19 (16)°, respectively. Besides the O—H···O hydrogen bonded to water molecule, the atom O2 of the sulfonate also contributed to a weak intramolecular C26—H26A···O2 interaction (Table 1) forming an S(5) ring motif (Bernstein et al., 1995). The bond lengths (Allen et al., 1987) and angles in (I) are in normal ranges and comparable with a related structure (Chantrapromma et al., 2008).

In the crystal packing, all O atoms of the sulfonate group are involved in weak C—H···O interactions (Table 1). The cation is linked to the anion by weak C—H···O interactions and the anion is further linked to the water molecule by O—H···O hydrogen bonds, forming a three-molecule unit (Table 1 and Fig. 2). These three-molecule units are arranged in a face-to-face manner into a ribbon-like structure along the b axis and these ribbons are stacked along the c axis (Fig. 2). The crystal structure is further stabilized by C—H···π interactions (Table 1). A π–π interaction with the distance Cg1···Cg2iv = 3.6074 (19) Å [symmetry code: (iv) 1 - x, -y, 1 - z] is observed; Cg1, Cg2, Cg3 and Cg4 are the centroids of the N1/C1/C6–C9, C1–C6, C12–C17 and C21–C26 rings, respectively.

Experimental

(E)-2-[4-(Dimethylamino)styryl]-1-methylpyridinium iodide (compound A) was synthesized according to our previously reported procedure (Chantrapromma et al., 2008). Silver(I) p-toluensulfonate (compound B) was synthesized according to a previous method (Rahman et al., 2003). The title compound was then prepared by mixing compound A (0.20 g, 0.5 mmol) in hot methanol (50 ml) and compound B (0.12 g, 0.5 mmol) in hot methanol (30 ml). The mixture immediately yielded a grey precipitate of silver iodide. After stirring the mixture for 30 min, the precipitate of silver iodide was removed and the resulting solution was evaporated yielding a green solid. Green block-shaped single crystals of the title compound suitable for X-ray structure determination were recrystalized from methanol by slow evaporation of the solvent at room temperature a few weeks (m.p. 557–558 K).

Refinement

All H atoms were placed in calculated positions, with d(O—H) = 0.88–0.90 Å, Uiso(H) = 1.5Ueq(O), d(C—H) = 0.93 Å, Uiso(H) = 1.2Ueq(C) for aromatic and CH, and 0.96 Å, Uiso(H) = 1.5Ueq(C) for CH3 atoms. A rotating group model was used for the methyl groups. The highest residual electron density peak is located at 0.98 Å from C8 and the deepest hole is located at 0.96 Å from S1.

Figures

Fig. 1.

Fig. 1.

The asymmetric unit of (I), showing 50% probability displacement ellipsoids and the atom-numbering scheme.

Fig. 2.

Fig. 2.

The crystal packing of (I) viewed along the b axis. The O—H···O and weak C—H···O interactions are drawn as dashed lines.

Crystal data

C20H21N2+·C7H7O3S·H2O Z = 2
Mr = 478.60 F(000) = 508
Triclinic, P1 Dx = 1.359 Mg m3
Hall symbol: -P 1 Melting point = 557–558 K
a = 10.9739 (5) Å Mo Kα radiation, λ = 0.71073 Å
b = 11.1789 (5) Å Cell parameters from 5390 reflections
c = 11.1923 (9) Å θ = 1.2–27.5°
α = 97.133 (5)° µ = 0.18 mm1
β = 100.322 (5)° T = 100 K
γ = 117.021 (3)° Block, green
V = 1169.78 (13) Å3 0.24 × 0.19 × 0.08 mm

Data collection

Bruker SMART APEX2 CCD area-detector diffractometer 5390 independent reflections
Radiation source: fine-focus sealed tube 3272 reflections with I > 2σ(I)
graphite Rint = 0.073
Detector resolution: 8.33 pixels mm-1 θmax = 27.5°, θmin = 1.9°
ω scans h = −14→14
Absorption correction: multi-scan (SADABS; Bruker, 2005) k = −14→14
Tmin = 0.958, Tmax = 0.986 l = −14→11
17557 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.072 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.203 H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0951P)2 + 0.1631P] where P = (Fo2 + 2Fc2)/3
5390 reflections (Δ/σ)max < 0.001
311 parameters Δρmax = 0.60 e Å3
0 restraints Δρmin = −0.47 e Å3

Special details

Experimental. The low-temparture data was collected with the Oxford Cryosystem Cobra low-temperature attachment.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.16105 (8) 0.41169 (9) 0.37784 (7) 0.0306 (2)
O1 0.0863 (2) 0.4772 (2) 0.3214 (2) 0.0361 (6)
O2 0.2576 (3) 0.4944 (4) 0.4973 (2) 0.0784 (11)
O3 0.0690 (3) 0.2712 (3) 0.3786 (3) 0.0708 (10)
O1W 0.2135 (2) 0.6205 (2) 0.7095 (2) 0.0371 (6)
H1W 0.2122 0.5660 0.6424 0.056*
H2W 0.1227 0.5918 0.7009 0.056*
N1 0.7361 (3) 0.0767 (3) 0.5500 (2) 0.0286 (6)
N2 1.1460 (3) −0.1954 (3) 0.0336 (2) 0.0342 (6)
C1 0.6510 (3) 0.0789 (3) 0.6300 (3) 0.0270 (7)
C2 0.6415 (3) 0.1968 (3) 0.6702 (3) 0.0331 (7)
H2A 0.6928 0.2775 0.6453 0.040*
C3 0.5566 (3) 0.1928 (3) 0.7459 (3) 0.0343 (8)
H3A 0.5517 0.2722 0.7728 0.041*
C4 0.4776 (3) 0.0760 (4) 0.7845 (3) 0.0335 (8)
H4A 0.4200 0.0770 0.8359 0.040*
C5 0.4840 (3) −0.0424 (3) 0.7467 (3) 0.0332 (8)
H5A 0.4311 −0.1218 0.7726 0.040*
C6 0.5721 (3) −0.0429 (3) 0.6678 (3) 0.0283 (7)
C7 0.5835 (3) −0.1616 (3) 0.6271 (3) 0.0333 (7)
H7A 0.5333 −0.2419 0.6529 0.040*
C8 0.6659 (3) −0.1590 (3) 0.5517 (3) 0.0321 (7)
H8A 0.6733 −0.2375 0.5274 0.039*
C9 0.7441 (3) −0.0373 (3) 0.5067 (3) 0.0252 (6)
C10 0.8232 (3) −0.0412 (3) 0.4199 (3) 0.0281 (7)
H10A 0.8713 0.0395 0.3939 0.034*
C11 0.8347 (3) −0.1494 (3) 0.3726 (3) 0.0310 (7)
H11A 0.7869 −0.2295 0.3996 0.037*
C12 0.9139 (3) −0.1564 (3) 0.2832 (3) 0.0297 (7)
C13 0.9132 (3) −0.2798 (3) 0.2436 (3) 0.0335 (7)
H13A 0.8599 −0.3560 0.2733 0.040*
C14 0.9879 (3) −0.2927 (3) 0.1630 (3) 0.0304 (7)
H14A 0.9845 −0.3772 0.1394 0.036*
C15 1.0705 (3) −0.1817 (3) 0.1142 (3) 0.0265 (7)
C16 1.0722 (3) −0.0549 (3) 0.1534 (3) 0.0296 (7)
H16A 1.1246 0.0212 0.1232 0.035*
C17 0.9956 (3) −0.0444 (3) 0.2368 (3) 0.0303 (7)
H17A 0.9988 0.0396 0.2624 0.036*
C18 1.1368 (4) −0.3274 (4) −0.0096 (3) 0.0400 (8)
H18A 1.1633 −0.3597 0.0609 0.060*
H18B 1.1998 −0.3172 −0.0617 0.060*
H18C 1.0412 −0.3928 −0.0566 0.060*
C19 1.2199 (4) −0.0842 (4) −0.0251 (3) 0.0456 (9)
H19A 1.2955 −0.0062 0.0374 0.068*
H19B 1.1546 −0.0580 −0.0667 0.068*
H19C 1.2584 −0.1150 −0.0849 0.068*
C20 0.8178 (4) 0.2048 (3) 0.5119 (3) 0.0373 (8)
H20A 0.8989 0.2051 0.4907 0.056*
H20B 0.8488 0.2828 0.5794 0.056*
H20C 0.7590 0.2104 0.4405 0.056*
C21 0.2694 (3) 0.4028 (3) 0.2798 (3) 0.0255 (6)
C22 0.2061 (3) 0.3196 (3) 0.1602 (3) 0.0333 (7)
H22A 0.1077 0.2714 0.1305 0.040*
C23 0.2884 (3) 0.3080 (3) 0.0850 (3) 0.0313 (7)
H23A 0.2447 0.2519 0.0046 0.038*
C24 0.4360 (3) 0.3785 (3) 0.1271 (3) 0.0291 (7)
C25 0.4974 (3) 0.4628 (3) 0.2463 (3) 0.0300 (7)
H25A 0.5958 0.5115 0.2759 0.036*
C26 0.4160 (3) 0.4765 (3) 0.3227 (3) 0.0286 (7)
H26A 0.4595 0.5349 0.4021 0.034*
C27 0.5253 (4) 0.3608 (4) 0.0459 (3) 0.0370 (8)
H27A 0.4763 0.3403 −0.0404 0.055*
H27B 0.5420 0.2863 0.0616 0.055*
H27C 0.6143 0.4446 0.0649 0.055*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0328 (4) 0.0371 (5) 0.0331 (4) 0.0226 (4) 0.0159 (3) 0.0132 (4)
O1 0.0380 (13) 0.0384 (13) 0.0485 (14) 0.0270 (12) 0.0196 (11) 0.0202 (11)
O2 0.0542 (18) 0.157 (3) 0.0318 (15) 0.068 (2) 0.0054 (13) −0.0097 (17)
O3 0.095 (2) 0.0431 (16) 0.127 (3) 0.0462 (17) 0.094 (2) 0.0523 (17)
O1W 0.0345 (12) 0.0385 (14) 0.0405 (13) 0.0194 (11) 0.0115 (11) 0.0084 (11)
N1 0.0282 (14) 0.0278 (14) 0.0312 (14) 0.0141 (12) 0.0091 (11) 0.0086 (11)
N2 0.0324 (15) 0.0387 (16) 0.0352 (15) 0.0182 (14) 0.0150 (12) 0.0091 (13)
C1 0.0221 (15) 0.0381 (18) 0.0213 (15) 0.0142 (14) 0.0073 (12) 0.0086 (13)
C2 0.0332 (18) 0.0310 (18) 0.0383 (18) 0.0153 (15) 0.0120 (15) 0.0163 (15)
C3 0.0381 (18) 0.0316 (18) 0.0392 (19) 0.0222 (16) 0.0089 (15) 0.0096 (15)
C4 0.0285 (17) 0.044 (2) 0.0311 (17) 0.0186 (16) 0.0121 (14) 0.0109 (15)
C5 0.0296 (17) 0.0341 (18) 0.0315 (17) 0.0096 (15) 0.0088 (14) 0.0161 (14)
C6 0.0322 (17) 0.0255 (16) 0.0257 (16) 0.0167 (14) −0.0004 (13) 0.0022 (12)
C7 0.0331 (17) 0.0292 (18) 0.0358 (18) 0.0116 (15) 0.0110 (15) 0.0145 (14)
C8 0.0316 (17) 0.0367 (19) 0.0280 (16) 0.0170 (16) 0.0075 (14) 0.0070 (14)
C9 0.0240 (15) 0.0229 (16) 0.0263 (16) 0.0122 (13) 0.0002 (12) 0.0035 (12)
C10 0.0259 (16) 0.0324 (18) 0.0286 (16) 0.0153 (15) 0.0085 (13) 0.0093 (13)
C11 0.0311 (17) 0.0281 (17) 0.0328 (17) 0.0130 (15) 0.0092 (14) 0.0084 (14)
C12 0.0270 (16) 0.0349 (18) 0.0266 (16) 0.0157 (15) 0.0045 (13) 0.0062 (14)
C13 0.0283 (17) 0.0358 (19) 0.0319 (17) 0.0125 (15) 0.0066 (14) 0.0080 (14)
C14 0.0284 (16) 0.0308 (18) 0.0344 (17) 0.0161 (15) 0.0106 (14) 0.0065 (14)
C15 0.0231 (15) 0.0303 (17) 0.0247 (15) 0.0135 (14) 0.0040 (12) 0.0038 (13)
C16 0.0258 (16) 0.0288 (17) 0.0328 (17) 0.0123 (14) 0.0058 (13) 0.0098 (14)
C17 0.0325 (17) 0.0285 (17) 0.0297 (17) 0.0188 (15) 0.0007 (13) 0.0008 (13)
C18 0.040 (2) 0.049 (2) 0.039 (2) 0.0293 (19) 0.0136 (16) 0.0030 (16)
C19 0.041 (2) 0.060 (3) 0.045 (2) 0.024 (2) 0.0236 (17) 0.0249 (19)
C20 0.0404 (19) 0.0348 (19) 0.044 (2) 0.0187 (17) 0.0220 (16) 0.0160 (16)
C21 0.0289 (16) 0.0276 (17) 0.0267 (15) 0.0172 (14) 0.0103 (13) 0.0113 (13)
C22 0.0266 (16) 0.043 (2) 0.0309 (17) 0.0165 (16) 0.0082 (14) 0.0102 (15)
C23 0.0352 (18) 0.0352 (18) 0.0227 (16) 0.0169 (16) 0.0069 (14) 0.0065 (13)
C24 0.0361 (17) 0.0287 (17) 0.0334 (17) 0.0207 (15) 0.0148 (14) 0.0157 (14)
C25 0.0222 (15) 0.0281 (17) 0.0388 (18) 0.0102 (14) 0.0078 (13) 0.0132 (14)
C26 0.0297 (16) 0.0240 (16) 0.0303 (16) 0.0115 (14) 0.0086 (13) 0.0063 (13)
C27 0.0410 (19) 0.045 (2) 0.042 (2) 0.0286 (18) 0.0240 (16) 0.0208 (16)

Geometric parameters (Å, °)

S1—O3 1.433 (3) C12—C17 1.396 (4)
S1—O2 1.435 (3) C13—C14 1.359 (4)
S1—O1 1.443 (2) C13—H13A 0.9300
S1—C21 1.782 (3) C14—C15 1.408 (4)
O1W—H1W 0.8997 C14—H14A 0.9300
O1W—H2W 0.8784 C15—C16 1.421 (4)
N1—C9 1.353 (4) C16—C17 1.392 (4)
N1—C1 1.411 (4) C16—H16A 0.9300
N1—C20 1.470 (4) C17—H17A 0.9300
N2—C15 1.368 (4) C18—H18A 0.9600
N2—C18 1.446 (4) C18—H18B 0.9600
N2—C19 1.453 (4) C18—H18C 0.9600
C1—C2 1.395 (4) C19—H19A 0.9600
C1—C6 1.409 (4) C19—H19B 0.9600
C2—C3 1.358 (4) C19—H19C 0.9600
C2—H2A 0.9300 C20—H20A 0.9600
C3—C4 1.374 (4) C20—H20B 0.9600
C3—H3A 0.9300 C20—H20C 0.9600
C4—C5 1.375 (5) C21—C22 1.382 (4)
C4—H4A 0.9300 C21—C26 1.385 (4)
C5—C6 1.423 (4) C22—C23 1.376 (4)
C5—H5A 0.9300 C22—H22A 0.9300
C6—C7 1.416 (4) C23—C24 1.393 (4)
C7—C8 1.336 (4) C23—H23A 0.9300
C7—H7A 0.9300 C24—C25 1.382 (4)
C8—C9 1.451 (4) C24—C27 1.509 (4)
C8—H8A 0.9300 C25—C26 1.385 (4)
C9—C10 1.423 (4) C25—H25A 0.9300
C10—C11 1.328 (4) C26—H26A 0.9300
C10—H10A 0.9300 C27—H27A 0.9600
C11—C12 1.455 (4) C27—H27B 0.9600
C11—H11A 0.9300 C27—H27C 0.9600
C12—C13 1.392 (4)
O3—S1—O2 113.8 (2) C13—C14—H14A 119.1
O3—S1—O1 113.16 (16) C15—C14—H14A 119.1
O2—S1—O1 112.01 (18) N2—C15—C14 121.4 (3)
O3—S1—C21 105.11 (14) N2—C15—C16 121.8 (3)
O2—S1—C21 105.52 (15) C14—C15—C16 116.8 (3)
O1—S1—C21 106.33 (13) C17—C16—C15 120.1 (3)
H1W—O1W—H2W 102.3 C17—C16—H16A 119.9
C9—N1—C1 123.0 (3) C15—C16—H16A 119.9
C9—N1—C20 119.4 (3) C16—C17—C12 121.9 (3)
C1—N1—C20 117.6 (2) C16—C17—H17A 119.0
C15—N2—C18 120.6 (3) C12—C17—H17A 119.0
C15—N2—C19 120.8 (3) N2—C18—H18A 109.5
C18—N2—C19 117.9 (3) N2—C18—H18B 109.5
C2—C1—C6 119.8 (3) H18A—C18—H18B 109.5
C2—C1—N1 121.8 (3) N2—C18—H18C 109.5
C6—C1—N1 118.4 (3) H18A—C18—H18C 109.5
C3—C2—C1 119.4 (3) H18B—C18—H18C 109.5
C3—C2—H2A 120.3 N2—C19—H19A 109.5
C1—C2—H2A 120.3 N2—C19—H19B 109.5
C2—C3—C4 122.7 (3) H19A—C19—H19B 109.5
C2—C3—H3A 118.7 N2—C19—H19C 109.5
C4—C3—H3A 118.7 H19A—C19—H19C 109.5
C3—C4—C5 119.6 (3) H19B—C19—H19C 109.5
C3—C4—H4A 120.2 N1—C20—H20A 109.5
C5—C4—H4A 120.2 N1—C20—H20B 109.5
C4—C5—C6 119.7 (3) H20A—C20—H20B 109.5
C4—C5—H5A 120.1 N1—C20—H20C 109.5
C6—C5—H5A 120.1 H20A—C20—H20C 109.5
C1—C6—C7 119.2 (3) H20B—C20—H20C 109.5
C1—C6—C5 118.8 (3) C22—C21—C26 119.7 (3)
C7—C6—C5 122.0 (3) C22—C21—S1 119.5 (2)
C8—C7—C6 120.4 (3) C26—C21—S1 120.8 (2)
C8—C7—H7A 119.8 C23—C22—C21 120.1 (3)
C6—C7—H7A 119.8 C23—C22—H22A 120.0
C7—C8—C9 121.9 (3) C21—C22—H22A 120.0
C7—C8—H8A 119.0 C22—C23—C24 121.2 (3)
C9—C8—H8A 119.0 C22—C23—H23A 119.4
N1—C9—C10 122.7 (3) C24—C23—H23A 119.4
N1—C9—C8 116.9 (3) C25—C24—C23 117.8 (3)
C10—C9—C8 120.4 (3) C25—C24—C27 121.3 (3)
C11—C10—C9 126.0 (3) C23—C24—C27 120.9 (3)
C11—C10—H10A 117.0 C24—C25—C26 121.6 (3)
C9—C10—H10A 117.0 C24—C25—H25A 119.2
C10—C11—C12 127.1 (3) C26—C25—H25A 119.2
C10—C11—H11A 116.4 C21—C26—C25 119.5 (3)
C12—C11—H11A 116.4 C21—C26—H26A 120.3
C13—C12—C17 117.2 (3) C25—C26—H26A 120.3
C13—C12—C11 119.0 (3) C24—C27—H27A 109.5
C17—C12—C11 123.8 (3) C24—C27—H27B 109.5
C14—C13—C12 122.2 (3) H27A—C27—H27B 109.5
C14—C13—H13A 118.9 C24—C27—H27C 109.5
C12—C13—H13A 118.9 H27A—C27—H27C 109.5
C13—C14—C15 121.9 (3) H27B—C27—H27C 109.5
C9—N1—C1—C2 −178.0 (3) C11—C12—C13—C14 −178.1 (3)
C20—N1—C1—C2 1.2 (4) C12—C13—C14—C15 −0.2 (5)
C9—N1—C1—C6 0.9 (4) C18—N2—C15—C14 3.6 (4)
C20—N1—C1—C6 −179.9 (3) C19—N2—C15—C14 174.2 (3)
C6—C1—C2—C3 0.3 (4) C18—N2—C15—C16 −176.9 (3)
N1—C1—C2—C3 179.2 (3) C19—N2—C15—C16 −6.3 (4)
C1—C2—C3—C4 −0.6 (5) C13—C14—C15—N2 179.6 (3)
C2—C3—C4—C5 0.5 (5) C13—C14—C15—C16 0.1 (4)
C3—C4—C5—C6 −0.2 (5) N2—C15—C16—C17 −179.1 (3)
C2—C1—C6—C7 −179.6 (3) C14—C15—C16—C17 0.4 (4)
N1—C1—C6—C7 1.5 (4) C15—C16—C17—C12 −0.9 (4)
C2—C1—C6—C5 0.0 (4) C13—C12—C17—C16 0.7 (4)
N1—C1—C6—C5 −178.9 (3) C11—C12—C17—C16 178.6 (3)
C4—C5—C6—C1 −0.1 (4) O3—S1—C21—C22 53.9 (3)
C4—C5—C6—C7 179.5 (3) O2—S1—C21—C22 174.5 (3)
C1—C6—C7—C8 −1.3 (4) O1—S1—C21—C22 −66.3 (3)
C5—C6—C7—C8 179.2 (3) O3—S1—C21—C26 −125.2 (3)
C6—C7—C8—C9 −1.3 (5) O2—S1—C21—C26 −4.6 (3)
C1—N1—C9—C10 176.0 (3) O1—S1—C21—C26 114.6 (2)
C20—N1—C9—C10 −3.3 (4) C26—C21—C22—C23 1.4 (5)
C1—N1—C9—C8 −3.3 (4) S1—C21—C22—C23 −177.7 (2)
C20—N1—C9—C8 177.5 (3) C21—C22—C23—C24 0.2 (5)
C7—C8—C9—N1 3.5 (4) C22—C23—C24—C25 −1.1 (5)
C7—C8—C9—C10 −175.8 (3) C22—C23—C24—C27 177.6 (3)
N1—C9—C10—C11 −179.3 (3) C23—C24—C25—C26 0.6 (4)
C8—C9—C10—C11 −0.1 (5) C27—C24—C25—C26 −178.1 (3)
C9—C10—C11—C12 179.5 (3) C22—C21—C26—C25 −1.9 (4)
C10—C11—C12—C13 −179.7 (3) S1—C21—C26—C25 177.2 (2)
C10—C11—C12—C17 2.4 (5) C24—C25—C26—C21 0.9 (4)
C17—C12—C13—C14 −0.2 (5)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O1W—H1W···O2 0.90 1.96 2.839 (4) 164
O1W—H2W···O1i 0.88 2.01 2.893 (3) 179
C10—H10A···O3ii 0.93 2.57 3.460 (4) 162
C17—H17A···O3ii 0.93 2.45 3.344 (5) 163
C20—H20A···O3ii 0.96 2.33 3.204 (6) 151
C20—H20B···O1iii 0.96 2.49 3.388 (4) 156
C26—H26A···O2 0.93 2.51 2.884 (5) 104
C7—H7A···Cg4iv 0.93 2.97 3.615 (4) 128
C23—H23A···Cg3v 0.93 2.82 3.594 (4) 141

Symmetry codes: (i) −x, −y+1, −z+1; (ii) x+1, y, z; (iii) −x+1, −y+1, −z+1; (iv) −x+1, −y, −z+1; (v) −x+1, −y, −z.

Footnotes

1

This paper is dedicated to the late Her Royal Highness Princess Galyani Vadhana Krom Luang Naradhiwas Rajanagarindra for her patronage of Science in Thailand.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS2369).

References

  1. Adachi, H., Takanishi, Y., Yabuzaki, J., Mori, Y. & Sasaki, T. (1999). J. Cryst. Growth, 158/159, 568–571.
  2. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, S1–19.
  3. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  4. Bruker (2005). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Chantrapromma, S., Kobkeatthawin, T., Chanawanno, K., Karalai, C. & Fun, H.-K. (2008). Acta Cryst. E64, o876–o877. [DOI] [PMC free article] [PubMed]
  6. Dittrich, Ph., Bartlome, R., Montemezzani, G. & Günter, P. (2003). Appl. Surf. Sci.220, 88–95.
  7. Nogi, K., Anwar, U., Tsuji, K., Duan, X.-M., Okada, S., Oikawa, H., Matsuda, H. & Nakanishi, H. (2000). Nonlinear Optics 24, 35–40.
  8. Ogawa, J., Okada, S., Glavcheva, Z. & Nakanishi, H. (2008). J. Cryst. Growth, 310, 836–842.
  9. Otero, M., Herranz, M. A., Seoane, C., Martín, N., Garín, J., Orduna, J., Alcalá, R. & Villacampa, B. (2002). Tetrahedron, 58, 7463–7475.
  10. Rahman, A. A., Razak, I. A., Fun, H.-K., Saenee, P., Jindawong, B., Chantrapromma, S. & Karalai, C. (2003). Acta Cryst. E59, o1798–o1800.
  11. Sato, N., Rikukawa, M., Sanui, K. & Ogata, N. (1999). Synth. Met.101, 132–133.
  12. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  13. Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
  14. Weir, C. A. M., Hadizad, T., Beaudin, A. M. R. & Wang, Z.-Y. (2003). Tetrahedron Lett.44, 4697–4700.
  15. Yang, Z., Wörle, M., Mutter, L., Jazbinsek, M. & Günter, P. (2007). Cryst. Growth Des.7, 83–86.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808040671/is2369sup1.cif

e-65-00o76-sup1.cif (24.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808040671/is2369Isup2.hkl

e-65-00o76-Isup2.hkl (263.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES