Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Dec 10;65(Pt 1):o80. doi: 10.1107/S1600536808041342

4-Chloro-3-nitro­benzamide

Bo-Nian Liu a, Shi-Gui Tang b, Hao-Yuan Li a, Cheng Guo a,*
PMCID: PMC2967989  PMID: 21581719

Abstract

In the crystal of the title compound, C7H5ClN2O3, the molecules are linked by N—H⋯O and C—H⋯O hydrogen bonds. The π–π contact between the benzene rings, [centroid–centroid distance = 3.803 (3) Å] may further stabilize the structure.

Related literature

For a related structure, see: Sun et al. (2006). For bond-length data, see: Allen et al. (1987).graphic file with name e-65-00o80-scheme1.jpg

Experimental

Crystal data

  • C7H5ClN2O3

  • M r = 200.58

  • Monoclinic, Inline graphic

  • a = 8.8490 (18) Å

  • b = 7.5470 (15) Å

  • c = 12.374 (3) Å

  • β = 101.18 (3)°

  • V = 810.7 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.44 mm−1

  • T = 294 (2) K

  • 0.30 × 0.20 × 0.10 mm

Data collection

  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968) T min = 0.879, T max = 0.957

  • 1555 measured reflections

  • 1459 independent reflections

  • 1085 reflections with I > 2σ(I)

  • R int = 0.061

  • 3 standard reflections frequency: 120 min intensity decay: none

Refinement

  • R[F 2 > 2σ(F 2)] = 0.078

  • wR(F 2) = 0.198

  • S = 1.01

  • 1459 reflections

  • 112 parameters

  • H-atom parameters constrained

  • Δρmax = 0.41 e Å−3

  • Δρmin = −0.51 e Å−3

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 and PLATON.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808041342/hk2596sup1.cif

e-65-00o80-sup1.cif (14.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808041342/hk2596Isup2.hkl

e-65-00o80-Isup2.hkl (72KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2B⋯O3i 0.86 2.10 2.958 (6) 177
N2—H2C⋯O2ii 0.86 2.26 3.067 (6) 155
C2—H2A⋯O3iii 0.93 2.42 3.331 (6) 166

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

The authors thank the Center of Testing and Analysis, Nanjing University, for support.

supplementary crystallographic information

Comment

Some derivatives of pyridine are important chemical materials. We report herein the crystal structure of the title compound.

In the molecule of the title compound (Fig 1), the bond lengths (Allen et al., 1987) and angles are within normal ranges. Ring A (C1-C6) is, of course, planar. Atoms Cl, N1 and C7 are 0.021 (3), 0.029 (3) and -0.001 (3) Å away from the plane of the benzene ring. The intramolecular C-H···O hydrogen bond results in the formation of a five-membered ring B (O2/N1/C5/C6/H5A), having envelope conformation with O2 atom displaced by 0.278 (3) Å from the plane of the other ring atoms.

In the crystal structure, intermolecular N-H···O and C-H···O hydrogen bonds (Table 1) link the molecules (Fig. 2), in which they may be effective in the stabilization of the structure. The π-π contact between the benzene rings, Cg1—Cg1i [symmetry code: (i) -x, -y, 1 - z, where Cg1 is centroid of the ring A (C1-C6)] may further stabilize the structure, with centroid-centroid distance of 3.803 (3) Å.

Experimental

For the preparation of the title compound, 4-chloro-3-nitrobenzoic acid (60.3 g, 0.32 mol) was suspended in thionyl chloride (180 ml) and heated at reflux for 5 h, then concentrated in vacuum as far as possible, the oily substance obtained. Added ice ammonia water (300 ml) to the oil, cooling to room temperature, a precipitate formed, which was collected by filtration and washed with water. Pure title compound was obtained by crystallizing from methanol (Sun et al., 2006). Crystals suitable for X-ray analysis were obtained by slow evaporation of a methanol solution.

Refinement

H atoms were positioned geometrically, with N-H = 0.86 (for NH2) and C-H = 0.93 Å for aromatic H and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C,N).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. Hydrogen bond is shown as dashed line.

Fig. 2.

Fig. 2.

A partial packing diagram of the title compound. Hydrogen bonds are shown as dashed lines.

Crystal data

C7H5ClN2O3 F(000) = 408
Mr = 200.58 Dx = 1.643 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 25 reflections
a = 8.8490 (18) Å θ = 10–13°
b = 7.5470 (15) Å µ = 0.44 mm1
c = 12.374 (3) Å T = 294 K
β = 101.18 (3)° Block, colorless
V = 810.7 (3) Å3 0.30 × 0.20 × 0.10 mm
Z = 4

Data collection

Enraf–Nonius CAD-4 diffractometer 1085 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.061
graphite θmax = 25.3°, θmin = 2.6°
ω/2θ scans h = −10→10
Absorption correction: ψ scan (North et al., 1968) k = 0→9
Tmin = 0.879, Tmax = 0.957 l = 0→14
1555 measured reflections 3 standard reflections every 120 min
1459 independent reflections intensity decay: none

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.078 H-atom parameters constrained
wR(F2) = 0.198 w = 1/[σ2(Fo2) + (0.060P)2 + 4.5P] where P = (Fo2 + 2Fc2)/3
S = 1.01 (Δ/σ)max < 0.001
1459 reflections Δρmax = 0.41 e Å3
112 parameters Δρmin = −0.50 e Å3
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl 0.65545 (17) 0.0416 (2) 0.36001 (13) 0.0618 (5)
O1 0.7053 (5) 0.1130 (7) 0.5888 (4) 0.0749 (14)
O2 0.8610 (5) 0.3068 (6) 0.6677 (3) 0.0554 (11)
O3 1.3178 (4) 0.4669 (5) 0.5500 (2) 0.0390 (9)
N1 0.8103 (5) 0.2076 (5) 0.5896 (3) 0.0385 (10)
N2 1.3809 (5) 0.3507 (7) 0.3985 (4) 0.0502 (12)
H2B 1.4701 0.4002 0.4120 0.060*
H2C 1.3546 0.2856 0.3409 0.060*
C1 0.8373 (6) 0.1359 (7) 0.3967 (4) 0.0378 (11)
C2 0.9221 (6) 0.1454 (7) 0.3143 (4) 0.0401 (12)
H2A 0.8819 0.1004 0.2448 0.048*
C3 1.0637 (6) 0.2201 (7) 0.3346 (4) 0.0424 (12)
H3A 1.1188 0.2260 0.2779 0.051*
C4 1.1312 (5) 0.2902 (6) 0.4397 (3) 0.0295 (10)
C5 1.0412 (5) 0.2840 (6) 0.5196 (3) 0.0316 (10)
H5A 1.0790 0.3319 0.5888 0.038*
C6 0.8958 (5) 0.2076 (6) 0.4985 (4) 0.0308 (10)
C7 1.2837 (6) 0.3746 (7) 0.4668 (4) 0.0435 (10)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl 0.0584 (9) 0.0679 (10) 0.0626 (10) −0.0058 (7) 0.0208 (7) −0.0114 (8)
O1 0.079 (3) 0.088 (3) 0.074 (3) −0.027 (3) 0.057 (3) −0.007 (3)
O2 0.072 (3) 0.068 (3) 0.035 (2) −0.016 (2) 0.0311 (18) −0.007 (2)
O3 0.0454 (18) 0.052 (2) 0.0267 (16) −0.0091 (16) 0.0254 (14) −0.0091 (15)
N1 0.054 (2) 0.038 (2) 0.036 (2) 0.000 (2) 0.0375 (19) 0.0044 (19)
N2 0.051 (2) 0.070 (3) 0.042 (2) −0.007 (2) 0.038 (2) −0.018 (2)
C1 0.049 (3) 0.035 (3) 0.035 (2) 0.008 (2) 0.020 (2) 0.004 (2)
C2 0.063 (3) 0.042 (3) 0.019 (2) 0.001 (2) 0.018 (2) −0.004 (2)
C3 0.068 (3) 0.044 (3) 0.024 (2) 0.002 (2) 0.031 (2) 0.002 (2)
C4 0.043 (2) 0.030 (2) 0.022 (2) −0.0015 (19) 0.0245 (18) −0.0009 (18)
C5 0.050 (3) 0.032 (2) 0.020 (2) 0.002 (2) 0.0234 (18) −0.0002 (18)
C6 0.046 (2) 0.028 (2) 0.027 (2) 0.0066 (19) 0.0275 (19) 0.0056 (18)
C7 0.061 (2) 0.038 (2) 0.038 (2) 0.009 (19) 0.034 (19) 0.006 (18)

Geometric parameters (Å, °)

Cl—C1 1.737 (5) C1—C6 1.377 (7)
O3—C7 1.231 (6) C2—C3 1.352 (7)
N1—O1 1.170 (6) C2—H2A 0.9300
N1—O2 1.236 (5) C3—C4 1.424 (7)
N1—C6 1.474 (5) C3—H3A 0.9300
N2—C7 1.329 (6) C4—C5 1.386 (6)
N2—H2B 0.8600 C4—C7 1.471 (7)
N2—H2C 0.8600 C5—C6 1.388 (7)
C1—C2 1.380 (6) C5—H5A 0.9300
O1—N1—O2 122.9 (4) C4—C3—H3A 118.9
O1—N1—C6 121.2 (4) C3—C4—C7 124.9 (4)
O2—N1—C6 115.8 (4) C5—C4—C3 116.2 (4)
C7—N2—H2B 120.0 C5—C4—C7 118.8 (4)
C7—N2—H2C 120.0 C4—C5—C6 121.3 (4)
H2B—N2—H2C 120.0 C4—C5—H5A 119.3
C2—C1—Cl 115.9 (4) C6—C5—H5A 119.3
C6—C1—Cl 124.4 (4) C1—C6—C5 120.4 (4)
C6—C1—C2 119.6 (5) C1—C6—N1 122.8 (4)
C1—C2—H2A 119.9 C5—C6—N1 116.8 (4)
C3—C2—C1 120.1 (5) O3—C7—N2 121.7 (5)
C3—C2—H2A 119.9 O3—C7—C4 120.0 (4)
C2—C3—C4 122.3 (4) N2—C7—C4 118.3 (5)
C2—C3—H3A 118.9
O1—N1—C6—C1 17.6 (7) C2—C3—C4—C5 −2.5 (7)
O2—N1—C6—C1 −165.6 (5) C2—C3—C4—C7 −179.3 (5)
O1—N1—C6—C5 −162.2 (5) C3—C4—C5—C6 2.3 (7)
O2—N1—C6—C5 14.6 (6) C7—C4—C5—C6 179.3 (4)
C6—C1—C2—C3 2.0 (8) C5—C4—C7—O3 −13.8 (7)
Cl—C1—C2—C3 178.6 (4) C3—C4—C7—O3 163.0 (5)
C2—C1—C6—C5 −2.2 (7) C5—C4—C7—N2 167.3 (5)
Cl—C1—C6—C5 −178.5 (4) C3—C4—C7—N2 −15.9 (8)
C2—C1—C6—N1 178.1 (4) C4—C5—C6—C1 0.0 (7)
Cl—C1—C6—N1 1.8 (7) C4—C5—C6—N1 179.7 (4)
C1—C2—C3—C4 0.4 (8)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N2—H2B···O3i 0.86 2.10 2.958 (6) 177
N2—H2C···O2ii 0.86 2.26 3.067 (6) 155
C2—H2A···O3iii 0.93 2.42 3.331 (6) 166
C5—H5A···O2 0.93 2.33 2.658 (6) 100

Symmetry codes: (i) −x+3, −y+1, −z+1; (ii) x+1/2, −y+1/2, z−1/2; (iii) x−1/2, −y+1/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HK2596).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Enraf–Nonius (1989). CAD-4 Software Enraf–Nonius, Delft. The Netherlands.
  3. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  4. Harms, K. & Wocadlo, S. (1995). XCAD4 University of Marburg, Germany.
  5. North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  7. Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
  8. Sun, Y. W. & Wang, J. W. (2006). Hua Xue Shi Ji, 28, 124–125.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808041342/hk2596sup1.cif

e-65-00o80-sup1.cif (14.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808041342/hk2596Isup2.hkl

e-65-00o80-Isup2.hkl (72KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES