Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Dec 10;65(Pt 1):o85. doi: 10.1107/S1600536808041378

3-Bromo-N′-(3,5-dichloro-2-hydroxy­benzyl­idene)benzohydrazide

Chuan-Gao Zhu a, Yi-Jun Wei a,*, Qi-Yong Zhu a
PMCID: PMC2967993  PMID: 21581723

Abstract

The title compound, C14H9BrCl2N2O2, was prepared by the reaction of 3,5-dichloro-2-hydroxy­benzaldehyde and 3-bromo­benzohydrazide in methanol. The dihedral angle between the two benzene rings is 13.0 (2)°. An intra­molecular O—H⋯N hydrogen bond is observed. The mol­ecules are linked into chains along the c axis by inter­molecular N—H⋯O hydrogen bonds.

Related literature

For the synthesis of Schiff bases, see: Akitsu & Einaga (2006); Butcher et al. (2005); Habibi et al. (2007); Pradeep (2005). For related structures, see: Bao & Wei (2008); Odabaşoğlu et al. (2007); Wang et al. (2006); Wei et al. (2008); Yathirajan et al. (2007); Yehye et al. (2008); Zhu et al. (2007).graphic file with name e-65-00o85-scheme1.jpg

Experimental

Crystal data

  • C14H9BrCl2N2O2

  • M r = 388.04

  • Monoclinic, Inline graphic

  • a = 8.272 (2) Å

  • b = 22.366 (3) Å

  • c = 8.237 (2) Å

  • β = 104.014 (2)°

  • V = 1478.6 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.15 mm−1

  • T = 298 (2) K

  • 0.23 × 0.23 × 0.22 mm

Data collection

  • Bruker SMART 1000 CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.495, T max = 0.513

  • 8590 measured reflections

  • 3224 independent reflections

  • 2144 reflections with I > 2σ(I)

  • R int = 0.035

Refinement

  • R[F 2 > 2σ(F 2)] = 0.036

  • wR(F 2) = 0.075

  • S = 0.98

  • 3224 reflections

  • 194 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.29 e Å−3

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808041378/ci2740sup1.cif

e-65-00o85-sup1.cif (15.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808041378/ci2740Isup2.hkl

e-65-00o85-Isup2.hkl (158.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.82 1.88 2.598 (3) 145
N2—H2⋯O2i 0.89 (1) 2.03 (1) 2.898 (3) 165 (3)

Symmetry code: (i) Inline graphic.

Acknowledgments

The authors thank the Natural Science Foundation of the Education Office of Anhui Province, China, for financial support (grant No. KJ2007A126ZC).

supplementary crystallographic information

Comment

Schiff bases are readily synthesized by the reaction of aldehydes with primary amines (Akitsu & Einaga, 2006; Pradeep, 2005; Butcher et al., 2005; Habibi et al., 2007). We have reported a few Schiff bases and their complexes (Wei et al., 2008; Zhu et al., 2007; Wang et al., 2006). In this paper, the crystal structure of a new Schiff base compound is reported.

The C═N bond length in the title molecule (Fig.1) is comparable with those observed in other Schiff bases (Yehye et al., 2008; Odabaşoğlu et al., 2007; Yathirajan et al., 2007). All bond lengths are within normal ranges and are comparable to those observed in a related compound (Bao & Wei, 2008). The dihedral angle between C1—C6 and C9—C14 phenyl rings is 13.0 (2)°, indicating that the molecule is non-planar. An intramolecular O1—H1···N1 hydrogen bond is observed.

The crystal structure is stabilized by intermolecular N–H···O hydrogen bonds (Table 1), forming chains along the c axis (Fig. 2).

Experimental

3,5-Dichloro-2-hydroxybenzaldehyde (1.0 mmol) and 3-bromobenzohydrazide (1.0 mmol) were dissolved in methanol (30 ml). The mixture was stirred at reflux for 10 min to give a clear colourless solution. After keeping this solution in air for 5 d, colourless needle-shaped crystals were formed.

Refinement

Atom H2 was located in a difference Fourier map and refined isotropically, with the N–H distance restrained to 0.90 (1) Å. All other H atoms were positioned geometrically (C–H = 0.93 Å and O–H = 0.82 Å) and refined as riding, with Uiso(H) values set at 1.2Ueq(C) and 1.5Ueq(O).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, showing 30% probability displacement ellipsoids. The dashed line indicates a hydrogen bond.

Fig. 2.

Fig. 2.

Molecular packing of the title compound, viewed along the a axis. Hydrogen bonds are shown as dashed lines.

Crystal data

C14H9BrCl2N2O2 F(000) = 768
Mr = 388.04 Dx = 1.743 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 1779 reflections
a = 8.272 (2) Å θ = 2.5–24.9°
b = 22.366 (3) Å µ = 3.15 mm1
c = 8.237 (2) Å T = 298 K
β = 104.014 (2)° Cut from needle, colorless
V = 1478.6 (5) Å3 0.23 × 0.23 × 0.22 mm
Z = 4

Data collection

Bruker SMART 1000 CCD area-detector diffractometer 3224 independent reflections
Radiation source: fine-focus sealed tube 2144 reflections with I > 2σ(I)
graphite Rint = 0.035
ω scans θmax = 27.0°, θmin = 2.5°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) h = −10→10
Tmin = 0.495, Tmax = 0.513 k = −25→28
8590 measured reflections l = −9→10

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.075 H atoms treated by a mixture of independent and constrained refinement
S = 0.98 w = 1/[σ2(Fo2) + (0.0309P)2] where P = (Fo2 + 2Fc2)/3
3224 reflections (Δ/σ)max = 0.001
194 parameters Δρmax = 0.32 e Å3
1 restraint Δρmin = −0.29 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Br1 0.48270 (4) 0.491887 (13) −0.27385 (4) 0.05628 (13)
Cl1 1.05566 (10) 1.05415 (3) 0.26163 (9) 0.0498 (2)
Cl2 1.25693 (10) 0.85535 (3) 0.61875 (9) 0.0575 (2)
N1 0.7849 (3) 0.79256 (10) 0.0814 (3) 0.0410 (6)
N2 0.6808 (3) 0.76119 (10) −0.0450 (3) 0.0422 (6)
O1 1.0195 (3) 0.79478 (8) 0.3556 (2) 0.0541 (5)
H1 0.9462 0.7793 0.2827 0.081*
O2 0.6767 (3) 0.68457 (8) 0.1345 (2) 0.0489 (5)
C1 0.9228 (3) 0.88201 (12) 0.1849 (3) 0.0367 (6)
C2 1.0236 (3) 0.85387 (12) 0.3269 (3) 0.0395 (7)
C3 1.1329 (3) 0.88909 (12) 0.4431 (3) 0.0397 (7)
C4 1.1435 (3) 0.94963 (12) 0.4228 (3) 0.0409 (7)
H4 1.2183 0.9722 0.5017 0.049*
C5 1.0430 (3) 0.97700 (11) 0.2850 (3) 0.0373 (7)
C6 0.9340 (3) 0.94382 (12) 0.1660 (3) 0.0387 (7)
H6 0.8676 0.9626 0.0726 0.046*
C7 0.8091 (3) 0.84757 (12) 0.0558 (3) 0.0417 (7)
H7 0.7548 0.8656 −0.0442 0.050*
C8 0.6373 (3) 0.70501 (12) −0.0078 (3) 0.0392 (7)
C9 0.5343 (3) 0.67109 (12) −0.1518 (3) 0.0373 (6)
C10 0.5519 (3) 0.60935 (11) −0.1486 (3) 0.0371 (6)
H10 0.6248 0.5906 −0.0595 0.044*
C11 0.4591 (3) 0.57631 (12) −0.2802 (3) 0.0404 (7)
C12 0.3488 (4) 0.60312 (13) −0.4123 (3) 0.0468 (7)
H12 0.2877 0.5801 −0.5000 0.056*
C13 0.3297 (4) 0.66421 (13) −0.4133 (4) 0.0500 (8)
H13 0.2544 0.6826 −0.5013 0.060*
C14 0.4222 (4) 0.69829 (13) −0.2838 (3) 0.0444 (7)
H14 0.4093 0.7396 −0.2852 0.053*
H2 0.662 (4) 0.7733 (13) −0.1513 (18) 0.080*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Br1 0.0667 (2) 0.04067 (18) 0.0550 (2) −0.00069 (16) 0.00200 (16) −0.00918 (15)
Cl1 0.0677 (6) 0.0367 (4) 0.0459 (4) −0.0006 (3) 0.0154 (4) 0.0005 (3)
Cl2 0.0656 (6) 0.0545 (5) 0.0430 (4) 0.0122 (4) −0.0048 (4) 0.0070 (4)
N1 0.0484 (15) 0.0403 (14) 0.0325 (13) −0.0066 (11) 0.0066 (11) −0.0035 (11)
N2 0.0558 (16) 0.0401 (13) 0.0280 (12) −0.0083 (12) 0.0053 (12) −0.0038 (11)
O1 0.0718 (17) 0.0375 (11) 0.0463 (13) −0.0037 (10) 0.0013 (11) 0.0071 (10)
O2 0.0714 (15) 0.0428 (11) 0.0283 (11) −0.0042 (10) 0.0042 (10) −0.0001 (9)
C1 0.0396 (16) 0.0403 (16) 0.0311 (14) −0.0024 (13) 0.0103 (12) −0.0019 (13)
C2 0.0462 (18) 0.0379 (16) 0.0361 (16) 0.0023 (13) 0.0130 (14) 0.0055 (13)
C3 0.0410 (17) 0.0448 (17) 0.0311 (15) 0.0044 (14) 0.0047 (13) 0.0022 (13)
C4 0.0429 (18) 0.0442 (17) 0.0335 (15) −0.0037 (14) 0.0050 (13) −0.0038 (13)
C5 0.0457 (19) 0.0329 (15) 0.0346 (15) −0.0011 (12) 0.0119 (14) −0.0007 (12)
C6 0.0467 (18) 0.0403 (16) 0.0295 (14) 0.0050 (14) 0.0100 (13) 0.0049 (13)
C7 0.0463 (19) 0.0455 (18) 0.0324 (15) −0.0037 (14) 0.0076 (13) −0.0004 (13)
C8 0.0462 (18) 0.0393 (16) 0.0317 (16) 0.0023 (13) 0.0085 (13) −0.0041 (13)
C9 0.0430 (18) 0.0408 (16) 0.0280 (14) −0.0024 (13) 0.0085 (13) −0.0018 (13)
C10 0.0418 (17) 0.0370 (15) 0.0302 (15) 0.0013 (13) 0.0044 (12) −0.0003 (12)
C11 0.0399 (18) 0.0410 (16) 0.0404 (17) 0.0012 (13) 0.0098 (14) −0.0043 (14)
C12 0.0464 (19) 0.0520 (19) 0.0375 (17) −0.0042 (15) 0.0016 (14) −0.0060 (14)
C13 0.0449 (19) 0.056 (2) 0.0424 (18) 0.0007 (15) −0.0023 (14) 0.0041 (15)
C14 0.0495 (19) 0.0385 (16) 0.0440 (17) 0.0040 (14) 0.0094 (15) 0.0053 (14)

Geometric parameters (Å, °)

Br1—C11 1.898 (3) C4—H4 0.93
Cl1—C5 1.742 (3) C5—C6 1.377 (4)
Cl2—C3 1.731 (3) C6—H6 0.93
N1—C7 1.272 (3) C7—H7 0.93
N1—N2 1.372 (3) C8—C9 1.490 (4)
N2—C8 1.362 (3) C9—C14 1.387 (4)
N2—H2 0.893 (10) C9—C10 1.388 (3)
O1—C2 1.345 (3) C10—C11 1.381 (4)
O1—H1 0.82 C10—H10 0.93
O2—C8 1.227 (3) C11—C12 1.377 (4)
C1—C6 1.397 (4) C12—C13 1.375 (4)
C1—C2 1.410 (4) C12—H12 0.93
C1—C7 1.458 (4) C13—C14 1.381 (4)
C2—C3 1.391 (4) C13—H13 0.93
C3—C4 1.370 (3) C14—H14 0.93
C4—C5 1.377 (4)
C7—N1—N2 117.7 (2) N1—C7—H7 120.3
C8—N2—N1 116.9 (2) C1—C7—H7 120.3
C8—N2—H2 120 (2) O2—C8—N2 122.4 (2)
N1—N2—H2 121 (2) O2—C8—C9 122.6 (2)
C2—O1—H1 109.5 N2—C8—C9 115.0 (2)
C6—C1—C2 119.5 (3) C14—C9—C10 119.9 (3)
C6—C1—C7 119.3 (3) C14—C9—C8 123.1 (2)
C2—C1—C7 121.1 (2) C10—C9—C8 117.0 (2)
O1—C2—C3 118.4 (2) C11—C10—C9 118.8 (3)
O1—C2—C1 123.3 (3) C11—C10—H10 120.6
C3—C2—C1 118.3 (2) C9—C10—H10 120.6
C4—C3—C2 121.7 (3) C12—C11—C10 121.6 (3)
C4—C3—Cl2 119.4 (2) C12—C11—Br1 119.9 (2)
C2—C3—Cl2 118.9 (2) C10—C11—Br1 118.5 (2)
C3—C4—C5 119.8 (3) C13—C12—C11 119.4 (3)
C3—C4—H4 120.1 C13—C12—H12 120.3
C5—C4—H4 120.1 C11—C12—H12 120.3
C4—C5—C6 120.5 (3) C12—C13—C14 120.2 (3)
C4—C5—Cl1 119.4 (2) C12—C13—H13 119.9
C6—C5—Cl1 120.1 (2) C14—C13—H13 119.9
C5—C6—C1 120.2 (3) C13—C14—C9 120.2 (3)
C5—C6—H6 119.9 C13—C14—H14 119.9
C1—C6—H6 119.9 C9—C14—H14 119.9
N1—C7—C1 119.4 (3)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O1—H1···N1 0.82 1.88 2.598 (3) 145
N2—H2···O2i 0.89 (1) 2.03 (1) 2.898 (3) 165 (3)

Symmetry codes: (i) x, −y+3/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI2740).

References

  1. Akitsu, T. & Einaga, Y. (2006). Acta Cryst. E62, o4315–o4317.
  2. Bao, X. & Wei, Y.-J. (2008). Acta Cryst. E64, o1682. [DOI] [PMC free article] [PubMed]
  3. Bruker (2002). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Butcher, R. J., Basu Baul, T. S., Singh, K. S. & Smith, F. E. (2005). Acta Cryst. E61, o1007–o1009.
  5. Habibi, M. H., Mokhtari, R., Harrington, R. W. & Clegg, W. (2007). Acta Cryst. E63, o2881.
  6. Odabaşoğlu, M., Büyükgüngör, O., Narayana, B., Vijesh, A. M. & Yathirajan, H. S. (2007). Acta Cryst. E63, o1916–o1918.
  7. Pradeep, C. P. (2005). Acta Cryst. E61, o3825–o3827.
  8. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  10. Wang, F.-W., Wei, Y.-J. & Zhu, Q.-Y. (2006). Chin. J. Struct. Chem.25, 1179–1182.
  11. Wei, Y.-J., Wang, F.-W. & Zhu, Q.-Y. (2008). Transition Met. Chem.33, 543–546.
  12. Yathirajan, H. S., Vijesh, A. M., Narayana, B., Sarojini, B. K. & Bolte, M. (2007). Acta Cryst. E63, o936–o938.
  13. Yehye, W. A., Ariffin, A. & Ng, S. W. (2008). Acta Cryst. E64, o1452. [DOI] [PMC free article] [PubMed]
  14. Zhu, C.-G., Wei, Y.-J. & Wang, F.-W. (2007). Acta Cryst. E63, m3197–m3198.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808041378/ci2740sup1.cif

e-65-00o85-sup1.cif (15.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808041378/ci2740Isup2.hkl

e-65-00o85-Isup2.hkl (158.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES