Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Dec 20;65(Pt 1):m113. doi: 10.1107/S1600536808042578

Aqua­bis(dichloro­acetato-κO)(1,10-phenanthroline-κ2 N,N′)copper(II)

Yaru Liu a, Jianzhong Ning b, Junshan Sun c,*, Chuan Zhang c
PMCID: PMC2968015  PMID: 21581478

Abstract

In the title complex, [Cu(C2HCl2O2)2(C12H8N2)(H2O)], the CuII ion has a distorted square-pyramidal coordination geometry. The equatorial positions are occupied by two N atoms from a 1,10-phenanthroline ligand [Cu—N = 1.994 (3) and 2.027 (3) Å] and two O atoms from dichloro­acetate ligands and a water mol­ecule [Cu—O = 1.971 (2) and 1.939 (2) Å]. One O atom from another dichloro­acetate ligand occupies the apical positon [Cu—O = 2.152 (3) Å]. Inter­molecular O—H⋯O hydrogen bonds link the mol­ecules into centrosymmetric dimers. The crystal packing also exhibits weak inter­molecular C—H⋯O hydrogen bonds, π–π inter­actions [centroid–centroid distance = 3.734 (2) Å] and short inter­molecular Cl⋯Cl contacts [3.306 (2) and 3.278 (2) Å].

Related literature

For applications of dichloro­acetic acid derivatives, see: Múdra et al. (2003); Lin et al. (2001); Zhu & Xiao (2006).graphic file with name e-65-0m113-scheme1.jpg

Experimental

Crystal data

  • [Cu(C2HCl2O2)2(C12H8N2)(H2O)]

  • M r = 517.62

  • Triclinic, Inline graphic

  • a = 8.2701 (8) Å

  • b = 10.8883 (11) Å

  • c = 12.0125 (12) Å

  • α = 67.4390 (10)°

  • β = 77.585 (2)°

  • γ = 73.776 (2)°

  • V = 952.02 (16) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.74 mm−1

  • T = 273 (2) K

  • 0.32 × 0.25 × 0.21 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.606, T max = 0.711

  • 5043 measured reflections

  • 3346 independent reflections

  • 2539 reflections with I > 2σ(I)

  • R int = 0.064

Refinement

  • R[F 2 > 2σ(F 2)] = 0.042

  • wR(F 2) = 0.106

  • S = 1.01

  • 3346 reflections

  • 261 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.63 e Å−3

  • Δρmin = −0.51 e Å−3

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808042578/cv2493sup1.cif

e-65-0m113-sup1.cif (18.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808042578/cv2493Isup2.hkl

e-65-0m113-Isup2.hkl (164.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C16—H16⋯O2i 0.98 2.24 3.118 (5) 149
O5—H5B⋯O2ii 0.85 (2) 1.81 (2) 2.654 (3) 174 (3)
O5—H5A⋯O4 0.85 (2) 1.86 (2) 2.673 (4) 159 (3)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

The authors thank the Postgraduate Foundation of Taishan University for financial support (grant No. Y07–2–15).

supplementary crystallographic information

Comment

Dichloroacetic acid and its derivatives are biologically active compounds which have been widely studied because of their fascinating topologies and potential applications as functional materials (Múdra et al., 2003; Lin et al., 2001; Zhu et al., 2006;). In our study of this field, we selected 1,10-phenanthroline as the co-ligand to continue our exploration to the Cu complexes with the dichloroacetic acid ligand. Herein we report the structure of the title complex (I).

In (I) (Fig. 1), the Cu ion has a distorted square-pyramidal coordination. Two N atoms from 1,10-phenanthroline ligand and two oxygen atoms from a dichloroacetic acid ligand form a basal plane, and an aqua atom occupy the axial apical position. Intermolecular O—H···O hydrogen bonds (Table 2) link the molecules into centrosymmetric dimers. The crystal packing exhibits also weak intermolecular C—H···O hydrogen bonds, π–π interactions and short intermolecular Cl···Cl contacts (Table 1).

Experimental

A mixture of Cu(CH3COO)2*3H2O(204 mg, 1 mmol) and 1,10-phenanthroline (185 mg, 1 mmol) in methanol(30 ml) was placed in a Teflon-lined stainless steel Parr bomb that was heated at 403 K for 48 h. The bomb was then cooled down to the room temperature, the solution was filtered. The solvent was removed from the filtrate under vacuum, and the solid residue was recrystallized from diethyl ether; blue crystals suitable for X-Ray diffraction study were obtained. Yield, 0.760 g, 83%. m.p. 573 K. Analysis, calculated for C16H12Cl4CuN2O5: C 46.73, H 2.94, N 6.81; found: C 46.95, H 2.56, N 7.07%. The elemental analyses were performed with a Perkine Elemer PE2400II instrument.

Refinement

C-bound H atoms were geometrically positioned (C—H 0.93–0.97 Å) and refined as riding, with Uiso(H)=1.2Ueq(C). The water H atoms were located on a Fourier map and isotropically refined with the distance restraints O—H=0.85 (2) Å.

Figures

Fig. 1.

Fig. 1.

The structure of the title complex, showing 30% probability displacement ellipsoids and the atom-numbering scheme. The H atoms are omitted.

Crystal data

[Cu(C2HCl2O2)2(C12H8N2)(H2O)] Z = 2
Mr = 517.62 F(000) = 518
Triclinic, P1 Dx = 1.806 Mg m3
a = 8.2701 (8) Å Mo Kα radiation, λ = 0.71073 Å
b = 10.8883 (11) Å Cell parameters from 1923 reflections
c = 12.0125 (12) Å θ = 2.3–27.1°
α = 67.439 (1)° µ = 1.74 mm1
β = 77.585 (2)° T = 273 K
γ = 73.776 (2)° Block, colorless
V = 952.02 (16) Å3 0.32 × 0.25 × 0.21 mm

Data collection

Bruker SMART CCD area-detector diffractometer 3346 independent reflections
Radiation source: fine-focus sealed tube 2539 reflections with I > 2σ(I)
graphite Rint = 0.064
φ and ω scans θmax = 25.1°, θmin = 1.9°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) h = −9→8
Tmin = 0.606, Tmax = 0.711 k = −12→12
5043 measured reflections l = −14→14

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.106 H atoms treated by a mixture of independent and constrained refinement
S = 1.00 w = 1/[σ2(Fo2) + (0.046P)2] where P = (Fo2 + 2Fc2)/3
3346 reflections (Δ/σ)max < 0.001
261 parameters Δρmax = 0.63 e Å3
3 restraints Δρmin = −0.51 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cu1 0.23680 (6) 0.74569 (4) 0.41387 (4) 0.03375 (16)
Cl4 0.12884 (15) 0.83880 (10) 0.01776 (9) 0.0498 (3)
Cl3 0.18005 (19) 0.55281 (11) 0.05837 (10) 0.0653 (4)
Cl1 0.66991 (17) 0.90846 (12) 0.08639 (11) 0.0717 (4)
Cl2 0.5908 (2) 0.69108 (14) 0.04161 (11) 0.0831 (5)
O3 0.1567 (3) 0.7463 (2) 0.2733 (2) 0.0399 (6)
C5 0.2814 (4) 0.9060 (3) 0.5379 (3) 0.0310 (8)
O5 0.1749 (4) 0.5698 (3) 0.5130 (2) 0.0471 (7)
N2 0.1747 (4) 0.9522 (3) 0.3541 (2) 0.0324 (7)
N1 0.3082 (4) 0.7741 (3) 0.5489 (3) 0.0343 (7)
C9 0.0716 (5) 1.1808 (4) 0.2276 (3) 0.0447 (10)
H9 0.0263 1.2392 0.1564 0.054*
O2 0.7530 (4) 0.6097 (3) 0.2708 (2) 0.0586 (8)
C13 0.6067 (5) 0.6806 (4) 0.2683 (3) 0.0344 (8)
C16 0.0957 (5) 0.6794 (3) 0.1249 (3) 0.0340 (8)
H16 −0.0272 0.6861 0.1432 0.041*
C11 0.2127 (6) 1.1856 (4) 0.4993 (4) 0.0471 (10)
H11 0.1873 1.2779 0.4887 0.056*
C15 0.1639 (5) 0.6447 (3) 0.2447 (3) 0.0341 (8)
O4 0.2088 (4) 0.5243 (3) 0.3049 (2) 0.0609 (9)
C14 0.5542 (5) 0.7783 (4) 0.1437 (3) 0.0357 (9)
H14 0.4330 0.8198 0.1536 0.043*
C1 0.3872 (5) 0.6806 (4) 0.6436 (3) 0.0447 (10)
H1 0.4132 0.5893 0.6509 0.054*
C12 0.2859 (6) 1.0935 (4) 0.5985 (4) 0.0510 (11)
H12 0.3130 1.1242 0.6531 0.061*
C8 0.1025 (5) 1.2327 (4) 0.3051 (3) 0.0421 (10)
H8 0.0766 1.3264 0.2879 0.051*
C10 0.1075 (5) 1.0398 (4) 0.2542 (3) 0.0398 (9)
H10 0.0836 1.0063 0.2004 0.048*
C6 0.2062 (5) 1.0040 (3) 0.4314 (3) 0.0306 (8)
C7 0.1742 (5) 1.1436 (4) 0.4118 (3) 0.0368 (9)
C4 0.3223 (5) 0.9501 (4) 0.6208 (3) 0.0390 (9)
C2 0.4306 (6) 0.7160 (4) 0.7297 (4) 0.0506 (11)
H2 0.4810 0.6482 0.7955 0.061*
O1 0.5012 (4) 0.6801 (3) 0.3559 (2) 0.0634 (9)
C3 0.4009 (6) 0.8478 (4) 0.7199 (3) 0.0477 (10)
H3 0.4321 0.8710 0.7779 0.057*
H5A 0.192 (6) 0.535 (3) 0.458 (2) 0.065 (16)*
H5B 0.194 (6) 0.509 (3) 0.5816 (15) 0.068 (15)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cu1 0.0471 (3) 0.0207 (2) 0.0318 (3) −0.00140 (19) −0.0107 (2) −0.00826 (19)
Cl4 0.0728 (8) 0.0307 (5) 0.0416 (6) −0.0135 (5) −0.0179 (5) −0.0005 (4)
Cl3 0.1158 (11) 0.0350 (6) 0.0486 (6) −0.0027 (6) −0.0209 (6) −0.0222 (5)
Cl1 0.0801 (9) 0.0472 (7) 0.0746 (8) −0.0293 (6) −0.0338 (7) 0.0168 (6)
Cl2 0.1151 (12) 0.0745 (9) 0.0677 (8) 0.0119 (8) −0.0340 (8) −0.0440 (7)
O3 0.0622 (18) 0.0227 (13) 0.0366 (14) −0.0029 (12) −0.0151 (13) −0.0119 (11)
C5 0.034 (2) 0.0258 (19) 0.0303 (18) −0.0034 (15) −0.0046 (16) −0.0087 (15)
O5 0.073 (2) 0.0312 (15) 0.0346 (16) −0.0132 (15) −0.0142 (15) −0.0038 (14)
N2 0.0419 (19) 0.0222 (16) 0.0315 (16) −0.0044 (13) −0.0051 (14) −0.0090 (13)
N1 0.0420 (18) 0.0271 (17) 0.0326 (16) −0.0042 (14) −0.0059 (14) −0.0104 (13)
C9 0.058 (3) 0.026 (2) 0.039 (2) −0.0008 (18) −0.014 (2) −0.0011 (17)
O2 0.0396 (17) 0.0558 (19) 0.0453 (16) 0.0073 (15) −0.0018 (14) 0.0063 (14)
C13 0.037 (2) 0.029 (2) 0.037 (2) −0.0090 (17) −0.0027 (18) −0.0108 (17)
C16 0.041 (2) 0.0239 (19) 0.0350 (19) −0.0038 (16) −0.0062 (17) −0.0094 (16)
C11 0.066 (3) 0.029 (2) 0.052 (2) −0.010 (2) −0.010 (2) −0.018 (2)
C15 0.041 (2) 0.024 (2) 0.034 (2) −0.0025 (16) −0.0069 (17) −0.0084 (16)
O4 0.113 (3) 0.0235 (15) 0.0449 (16) 0.0005 (16) −0.0331 (17) −0.0086 (13)
C14 0.032 (2) 0.030 (2) 0.039 (2) −0.0029 (16) −0.0048 (17) −0.0088 (16)
C1 0.060 (3) 0.024 (2) 0.044 (2) −0.0006 (19) −0.018 (2) −0.0048 (17)
C12 0.072 (3) 0.043 (3) 0.051 (3) −0.018 (2) −0.008 (2) −0.026 (2)
C8 0.051 (3) 0.0200 (19) 0.047 (2) −0.0035 (17) −0.007 (2) −0.0049 (17)
C10 0.051 (2) 0.030 (2) 0.035 (2) −0.0034 (18) −0.0145 (18) −0.0065 (17)
C6 0.034 (2) 0.0242 (19) 0.0298 (18) −0.0039 (15) 0.0009 (15) −0.0097 (15)
C7 0.040 (2) 0.0229 (19) 0.042 (2) −0.0055 (16) −0.0010 (18) −0.0088 (17)
C4 0.044 (2) 0.039 (2) 0.036 (2) −0.0094 (18) −0.0024 (18) −0.0149 (18)
C2 0.063 (3) 0.043 (3) 0.040 (2) −0.005 (2) −0.020 (2) −0.006 (2)
O1 0.0491 (19) 0.083 (2) 0.0386 (16) 0.0057 (16) −0.0020 (15) −0.0158 (16)
C3 0.057 (3) 0.052 (3) 0.038 (2) −0.010 (2) −0.014 (2) −0.016 (2)

Geometric parameters (Å, °)

Cu1—O3 1.939 (2) C13—O1 1.213 (4)
Cu1—O5 1.971 (2) C13—C14 1.536 (5)
Cu1—N1 1.994 (3) C16—C15 1.531 (5)
Cu1—N2 2.027 (3) C16—H16 0.9800
Cu1—O1 2.152 (3) C11—C12 1.359 (6)
Cl4—C16 1.774 (3) C11—C7 1.417 (5)
Cl3—C16 1.759 (4) C11—H11 0.9300
Cl1—C14 1.767 (4) C15—O4 1.223 (4)
Cl2—C14 1.753 (4) C14—H14 0.9800
O3—C15 1.261 (4) C1—C2 1.374 (5)
C5—N1 1.348 (4) C1—H1 0.9300
C5—C4 1.394 (5) C12—C4 1.432 (5)
C5—C6 1.444 (5) C12—H12 0.9300
O5—H5A 0.85 (3) C8—C7 1.410 (5)
O5—H5B 0.85 (3) C8—H8 0.9300
N2—C10 1.331 (4) C10—H10 0.9300
N2—C6 1.355 (4) C6—C7 1.401 (5)
N1—C1 1.348 (4) C4—C3 1.411 (5)
C9—C8 1.355 (5) C2—C3 1.349 (5)
C9—C10 1.399 (5) C2—H2 0.9300
C9—H9 0.9300 C3—H3 0.9300
O2—C13 1.240 (5)
Cl1···Cl4i 3.306 (2) Cg1···Cg2iii 3.734 (2)
Cl2···Cl3ii 3.278 (2)
O3—Cu1—O5 91.06 (10) O4—C15—O3 127.3 (3)
O3—Cu1—N1 171.76 (11) O4—C15—C16 117.8 (3)
O5—Cu1—N1 95.86 (11) O3—C15—C16 114.7 (3)
O3—Cu1—N2 90.28 (11) C13—C14—Cl2 110.9 (3)
O5—Cu1—N2 149.53 (12) C13—C14—Cl1 109.3 (2)
N1—Cu1—N2 81.49 (11) Cl2—C14—Cl1 110.0 (2)
O3—Cu1—O1 95.15 (11) C13—C14—H14 108.9
O5—Cu1—O1 101.24 (12) Cl2—C14—H14 108.9
N1—Cu1—O1 87.88 (12) Cl1—C14—H14 108.9
N2—Cu1—O1 108.94 (12) N1—C1—C2 122.1 (4)
C15—O3—Cu1 127.3 (2) N1—C1—H1 118.9
N1—C5—C4 124.2 (3) C2—C1—H1 119.0
N1—C5—C6 115.7 (3) C11—C12—C4 121.4 (4)
C4—C5—C6 120.1 (3) C11—C12—H12 119.3
Cu1—O5—H5A 99 (2) C4—C12—H12 119.3
Cu1—O5—H5B 137 (3) C9—C8—C7 119.6 (3)
H5A—O5—H5B 111 (3) C9—C8—H8 120.2
C10—N2—C6 117.7 (3) C7—C8—H8 120.2
C10—N2—Cu1 129.8 (3) N2—C10—C9 121.9 (4)
C6—N2—Cu1 112.5 (2) N2—C10—H10 119.0
C1—N1—C5 117.1 (3) C9—C10—H10 119.1
C1—N1—Cu1 128.6 (3) N2—C6—C7 124.1 (3)
C5—N1—Cu1 114.1 (2) N2—C6—C5 116.1 (3)
C8—C9—C10 120.4 (4) C7—C6—C5 119.8 (3)
C8—C9—H9 119.8 C6—C7—C8 116.3 (3)
C10—C9—H9 119.8 C6—C7—C11 118.9 (3)
O1—C13—O2 125.7 (4) C8—C7—C11 124.7 (3)
O1—C13—C14 117.0 (3) C5—C4—C3 116.3 (3)
O2—C13—C14 117.3 (3) C5—C4—C12 118.5 (3)
C15—C16—Cl3 113.0 (3) C3—C4—C12 125.2 (3)
C15—C16—Cl4 112.4 (2) C3—C2—C1 120.8 (3)
Cl3—C16—Cl4 109.30 (19) C3—C2—H2 119.6
C15—C16—H16 107.3 C1—C2—H2 119.6
Cl3—C16—H16 107.3 C13—O1—Cu1 144.6 (3)
Cl4—C16—H16 107.3 C2—C3—C4 119.4 (3)
C12—C11—C7 121.2 (4) C2—C3—H3 120.3
C12—C11—H11 119.4 C4—C3—H3 120.3
C7—C11—H11 119.4

Symmetry codes: (i) −x+1, −y+2, −z; (ii) −x+1, −y+1, −z; (iii) −x, −y+1, −z+2.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C16—H16···O2iv 0.98 2.24 3.118 (5) 149
O5—H5B···O2v 0.85 (2) 1.81 (2) 2.654 (3) 174 (3)
O5—H5A···O4 0.85 (2) 1.86 (2) 2.673 (4) 159 (3)

Symmetry codes: (iv) x−1, y, z; (v) −x+1, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV2493).

References

  1. Lin, M. M., Wei, H. H. & Lee, G. H. (2001). Polyhedron, 20, 3057–3063.
  2. Múdra, M., Moncol’, J., Švorec, J., Melník, M., Lönnecke, P., Glowiak, T. & Kirmse, R. (2003). Inorg. Chem. Commun.6, 1259–1265.
  3. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  4. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  5. Siemens (1996). SMART and SAINT Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
  6. Zhu, L.-G. & Xiao, H.-P. (2006). Acta Cryst. E62, m2061–m2063.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808042578/cv2493sup1.cif

e-65-0m113-sup1.cif (18.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808042578/cv2493Isup2.hkl

e-65-0m113-Isup2.hkl (164.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES