Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Dec 20;65(Pt 1):m119–m120. doi: 10.1107/S1600536808042487

A binuclear cobalt(II) complex of an NO3-donor Schiff base derived from 3-carboxyl­salicylaldehyde and 2-nitro­aniline

Zhao-Wen Yu a,*, Ling Chang a, Peng Sun a, Min-Hui He a
PMCID: PMC2968020  PMID: 21581483

Abstract

In the crystal structure of the centrosymmetric title complex, bis­{μ-3-[(2-nitro­phen­yl)imino­meth­yl]-2-oxidobenzoato}dicobalt(II), [Co2(C14H8N2O5)2], in which the ligand is 3-[(2-nitro­phen­yl)imino­meth­yl]-2-oxidobenzoate, a Schiff base synthesized from 2-nitro­aniline with 3-carboxyl­salicyl­aldehyde, the two cobalt(II) ions in the mol­ecular unit are bridged by two phenolate O atoms of the ligands. Each metal centre has a distorted square-planar geometry. In the crystal structure, mol­ecules are linked by Co⋯O inter­actions involving the nitro O atoms, forming a two-dimensional network. There are also C—H⋯O and π–π stacking inter­actions [centroid–centroid distances of 3.5004 (2), 3.6671 (2) and 3.6677 (2) Å] between adjacent benzene rings of the two-dimensional networks, leading to the formation of a three-dimensional framework.

Related literature

For binuclear cobalt(II) complexes of Schiff base ligands, see: Adams et al. (2002); Tone et al. (2007). For the design of mol­ecular solids, see: Zheng et al. (2003). For bond-valence parameters, see: Brown & Altermatt (1985). For luminescence emission, see: Li et al. (2008).graphic file with name e-65-0m119-scheme1.jpg

Experimental

Crystal data

  • [Co2(C14H8N2O5)2]

  • M r = 686.31

  • Monoclinic, Inline graphic

  • a = 8.3398 (6) Å

  • b = 11.0454 (8) Å

  • c = 13.3681 (9) Å

  • β = 99.6040 (10)°

  • V = 1214.16 (15) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.44 mm−1

  • T = 296 (2) K

  • 0.21 × 0.16 × 0.11 mm

Data collection

  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005) T min = 0.752, T max = 0.858

  • 6134 measured reflections

  • 2132 independent reflections

  • 1536 reflections with I > 2σ(I)

  • R int = 0.045

Refinement

  • R[F 2 > 2σ(F 2)] = 0.045

  • wR(F 2) = 0.123

  • S = 1.00

  • 2132 reflections

  • 199 parameters

  • H-atom parameters constrained

  • Δρmax = 0.63 e Å−3

  • Δρmin = −0.34 e Å−3

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808042487/su2076sup1.cif

e-65-0m119-sup1.cif (22.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808042487/su2076Isup2.hkl

e-65-0m119-Isup2.hkl (104.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected geometric parameters (Å, °).

Co1—O3 1.936 (3)
Co1—N1 1.947 (4)
Co1—O2i 1.874 (3)
Co1—O3i 1.929 (3)
Co1⋯O4 2.807 (4)
Co1⋯O5ii 2.867 (5)
O3—Co1—N1 92.51 (14)
O2i—Co1—O3 171.54 (13)
O3—Co1—O3i 78.42 (11)
O2i—Co1—N1 95.83 (14)
O3i—Co1—N1 170.41 (14)
O2i—Co1—O3i 93.33 (12)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8⋯O5iii 0.93 2.55 3.295 (6) 138
C12—H12⋯O1iv 0.93 2.58 3.230 (7) 128

Symmetry codes: (iii) Inline graphic; (iv) Inline graphic.

Acknowledgments

The authors are grateful for financial support from the Henan Administration of Science and Technology (grant No. 0111030700).

supplementary crystallographic information

Comment

Weak intermolecular forces, such as hydrogen bonding, π—π stacking, dipole—dipole attractions, and van der Waals interactions, have been studied in depth and can be used in the design of molecular solids with specific supramolecular structures and functions (Zheng et al., 2003). Numerous binuclear cobalt(II) complexes of Schiff bases have been studied (Tone et al., 2007). To the best of our knowledge, 2-NA (2-nitroaniline) Schiff bases have not been reported up to now. As a result of our interest in the design of organic systems suitable for the assembly of supramolecular compounds, we have synthesized the Schiff base ligand H2CSNA, from the condensation reaction of 3-carboxylsalicylaldehyde with 2-nitroaniline, and its binuclear cobalt(II) complex, [Co2(CSNA)2], (I) [where CSNA2- = 3-[(2-nitrophenyl)iminomethyl]-2-oxidobenzoate dianion].

Complex (I), a 2-NA Schiff base cobalt(II) complex, consists of centrosymmetric binuclear molecular units of [Co2(CSNA)2], as shown in Fig. 1. Selected bond distances and angles are given in Table 1. Each molecular unit contains two CSNA2- anions and two Co2+ ions. The two CSNA2- anions act as N1,O2,O3 tridentate ligands to chelate two Co2+ ions with the phenolate O-atoms (O3 and O3i: (i) = -x + 2, -y, -z + 1) as bridging atoms. The distance between the two metal centres is found to be 2.9950 (11) Å. These coordination bonds, forming a basal plane, are of normal strength with average bond length of Co—O 1.914 (3) Å, and Co—N 1.947 (4) Å.

The distances of the nitro group O-atoms O4 and O5i [symmetry code: (i) -x + 2, -y, -z + 1] to atom Co1 are 2.8066 (44) Å and 2.8667 (44) Å, respectively. Calculated by the formula of s = exp[(ro-r)/B], (r = bond length, s = bond value) (Brown & Altermatt, 1985), the two bond values are 0.049 and 0.042. Hence, only weak interactions exist between atoms O4 and Co1, and Co1 and O5i (Tabel 1). Thus every binuclear cobalt unit interacts with four adjacent ones through four nitro groups, forming a two-dimensional network (Fig. 2). The conformation of the ligand has changed obviously after coordination. It can be deduced that the free ligand might be a planar molecule because all the nonhydrogen atoms are in a conjugated system. In order to fulfil the intramolecular axial interaction of the nitro group, distortion has occurred between the two benzene rings of the ligand. In the binuclear molecular unit, the dihedral angle between the two benzene rings is 64.31 (13)°.

In the crystal structure there are C—H···O(nitro) interactions (Table 2), and relatively strong π···π stacking interactions [the distances between the centroids of the adjacent benzene rings are 3.5004 (2) Å, 3.6671 (2) Å and 3.6677 (2) Å] leading to the formation of a three-dimensional framework (Fig. 3).

The emission spectra of ethanol solutions of H2CSNA and complex (I) were measured at rt. As seen in Fig. 4, the results show that H2CSNA, exhibits two emissions at 394 nm and 466 nm (νex = 351 nm). Measurement of the complex revealed two emissions at 394 nm and 468 nm (νex = 351 nm). The similarity of the emissions bands of complex (I) and H2CSNA indicates that the luminescence emission of complex (I) may be assigned to the intraligand emission of the H2CSNA ligand (Li et al., 2008).

In summary, an unprecedented 2-nitroaniline Schiff base complex, [Co2(CSNA)2], has been synthesized and structurally characterized. This successful synthesis provides a feasible and effective synthetic method for searching and exploring other novel 2-nitroaniline Schiff base complexes.

Experimental

0.166 g (1.0 mmol) of 3-carboxylsalicylaldehyde and 0.138 g (1.0 mmol) of 2-nitroaniline were dissolved in 10 ml of methanol. The mixture was stirred at 60°C, and gradually a yellow precipitate (H2CSNA) was formed. 1 h later, 10 ml of a methanol solution of 0.08 g (2.0 mmol) NaOH, and 10 ml of a methanol solution of 0.285 g (1.2 mmol) CoCl2.6H2O were added to the H2CSNA solution, sequentially. After sirring for 1 h at 60°C the solution was allowed to cool to rt and then filtered. The filtrate was left to slowly evaporate at rt. After 10 d, blue crystals, suitable for X-ray structural analysis, were formed. FT/IR data for compound (I): 1634 cm-1(s, C=N), 1601 cm-1 (s, benzene ring), 1579 cm-1 (s, νas(COO)), 1549 cm-1 (s, νas(NO2)), 1360 cm-1 (s, νs(COO)), 1299 cm-1 (s, νs(NO2)).

Refinement

All the H-atoms were included in calculated positions, with C—H distances constrained to 0.93 Å, and refined in the riding-model approximation, with Uiso(H) = 1.2 Ueq(parent C-atom).

Figures

Fig. 1.

Fig. 1.

A view of the molecular structure of compound (I), showing the atom-labeling scheme. Atoms labeled (') are generated by the symmetry code -x + 2, -y, -z + 1.

Fig. 2.

Fig. 2.

View along the a-axis of the two-dimensional network of complex (I).

Fig. 3.

Fig. 3.

A view down the c axis of the π—π stacking interactions between the two-dimensional networks in compound (I).

Fig. 4.

Fig. 4.

Emission spectra of the ligand and complex (I) in ethanol solution, λex = 351 nm.

Crystal data

[Co2(C14H8N2O5)2] F(000) = 692
Mr = 686.31 Dx = 1.877 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 1063 reflections
a = 8.3398 (6) Å θ = 3.1–22.1°
b = 11.0454 (8) Å µ = 1.44 mm1
c = 13.3681 (9) Å T = 296 K
β = 99.604 (1)° Block, colourless
V = 1214.16 (15) Å3 0.21 × 0.16 × 0.11 mm
Z = 2

Data collection

Bruker SMART APEXII CCD area-detector diffractometer 2132 independent reflections
Radiation source: fine-focus sealed tube 1536 reflections with I > 2σ(I)
graphite Rint = 0.045
φ and ω scans θmax = 25.0°, θmin = 2.4°
Absorption correction: multi-scan (SADABS; Bruker, 2005) h = −9→9
Tmin = 0.752, Tmax = 0.858 k = −11→13
6134 measured reflections l = −15→14

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.123 H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0704P)2] where P = (Fo2 + 2Fc2)/3
2132 reflections (Δ/σ)max < 0.001
199 parameters Δρmax = 0.63 e Å3
0 restraints Δρmin = −0.34 e Å3

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Co1 0.98614 (6) 0.01580 (5) 0.38763 (4) 0.0353 (2)
O1 0.6445 (5) 0.0607 (5) 0.7562 (3) 0.0940 (18)
O2 0.8752 (4) 0.0241 (3) 0.7042 (2) 0.0581 (11)
O3 0.8641 (3) 0.0427 (3) 0.4968 (2) 0.0452 (10)
O4 1.0672 (5) 0.2394 (4) 0.3097 (3) 0.0765 (17)
O5 1.1737 (5) 0.2946 (4) 0.1830 (4) 0.101 (2)
N1 0.8176 (4) 0.0891 (3) 0.2876 (3) 0.0456 (12)
N2 1.0763 (5) 0.2359 (4) 0.2183 (3) 0.0615 (17)
C1 0.7269 (6) 0.0597 (5) 0.6879 (4) 0.0515 (17)
C2 0.6501 (5) 0.1047 (4) 0.5856 (3) 0.0430 (16)
C3 0.7180 (5) 0.0937 (3) 0.4962 (3) 0.0390 (14)
C4 0.6304 (5) 0.1389 (4) 0.4043 (3) 0.0433 (16)
C5 0.6823 (6) 0.1325 (4) 0.3083 (4) 0.0501 (17)
C6 0.4790 (5) 0.1957 (4) 0.4036 (4) 0.0541 (19)
C7 0.4134 (6) 0.2066 (4) 0.4893 (4) 0.0529 (19)
C8 0.4995 (5) 0.1602 (4) 0.5784 (4) 0.0502 (17)
C9 0.8350 (6) 0.0974 (4) 0.1838 (4) 0.0529 (17)
C10 0.7265 (7) 0.0345 (5) 0.1114 (4) 0.0668 (19)
C11 0.7394 (7) 0.0423 (5) 0.0094 (4) 0.069 (2)
C12 0.8596 (7) 0.1094 (5) −0.0233 (4) 0.065 (2)
C13 0.9691 (7) 0.1698 (5) 0.0476 (4) 0.071 (2)
C14 0.9579 (6) 0.1648 (4) 0.1501 (4) 0.0540 (17)
H5 0.61030 0.16330 0.25350 0.0600*
H6 0.42290 0.22650 0.34290 0.0650*
H7 0.31340 0.24430 0.48820 0.0640*
H8 0.45370 0.16660 0.63700 0.0600*
H10 0.64530 −0.01270 0.13150 0.0800*
H11 0.66480 0.00110 −0.03810 0.0830*
H12 0.86670 0.11380 −0.09190 0.0780*
H13 1.05180 0.21470 0.02670 0.0850*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Co1 0.0287 (3) 0.0470 (4) 0.0303 (3) 0.0063 (3) 0.0052 (2) 0.0036 (3)
O1 0.062 (3) 0.174 (4) 0.049 (2) 0.029 (3) 0.018 (2) −0.001 (3)
O2 0.048 (2) 0.083 (2) 0.0446 (19) 0.0159 (17) 0.0113 (15) 0.0061 (17)
O3 0.0358 (17) 0.0562 (18) 0.0441 (18) 0.0091 (14) 0.0080 (13) 0.0063 (15)
O4 0.072 (3) 0.091 (3) 0.065 (3) −0.014 (2) 0.007 (2) −0.004 (2)
O5 0.084 (3) 0.125 (4) 0.107 (4) −0.035 (3) 0.052 (3) 0.003 (3)
N1 0.040 (2) 0.059 (2) 0.038 (2) 0.0039 (18) 0.0074 (16) 0.0094 (18)
N2 0.055 (3) 0.075 (3) 0.056 (3) 0.000 (2) 0.014 (2) 0.009 (2)
C1 0.046 (3) 0.067 (3) 0.043 (3) 0.005 (2) 0.012 (2) −0.006 (2)
C2 0.035 (2) 0.047 (3) 0.048 (3) −0.002 (2) 0.010 (2) −0.005 (2)
C3 0.030 (2) 0.038 (2) 0.048 (3) −0.0018 (18) 0.0033 (19) −0.001 (2)
C4 0.036 (2) 0.046 (3) 0.049 (3) −0.004 (2) 0.010 (2) 0.000 (2)
C5 0.040 (3) 0.060 (3) 0.049 (3) 0.003 (2) 0.004 (2) 0.010 (2)
C6 0.037 (3) 0.053 (3) 0.070 (4) 0.004 (2) 0.002 (2) 0.012 (3)
C7 0.033 (3) 0.059 (3) 0.067 (4) 0.006 (2) 0.009 (2) −0.002 (3)
C8 0.037 (3) 0.057 (3) 0.058 (3) −0.002 (2) 0.012 (2) −0.012 (2)
C9 0.043 (3) 0.063 (3) 0.051 (3) 0.006 (2) 0.003 (2) 0.007 (2)
C10 0.060 (3) 0.076 (4) 0.060 (3) 0.001 (3) −0.003 (3) 0.001 (3)
C11 0.067 (4) 0.084 (4) 0.050 (3) 0.014 (3) −0.005 (3) 0.003 (3)
C12 0.066 (4) 0.083 (4) 0.045 (3) 0.022 (3) 0.004 (3) −0.001 (3)
C13 0.071 (4) 0.083 (4) 0.064 (4) 0.023 (3) 0.027 (3) 0.016 (3)
C14 0.054 (3) 0.059 (3) 0.048 (3) 0.011 (2) 0.006 (2) 0.006 (2)

Geometric parameters (Å, °)

Co1—O3 1.936 (3) C4—C6 1.409 (6)
Co1—N1 1.947 (4) C6—C7 1.355 (7)
Co1—O2i 1.874 (3) C7—C8 1.383 (7)
Co1—O3i 1.929 (3) C9—C10 1.395 (7)
O1—C1 1.231 (7) C9—C14 1.401 (7)
O2—C1 1.281 (6) C10—C11 1.388 (8)
O3—C3 1.341 (5) C11—C12 1.375 (8)
O4—N2 1.237 (6) C12—C13 1.374 (8)
O5—N2 1.196 (6) C13—C14 1.390 (7)
N1—C5 1.298 (6) C5—H5 0.9300
N1—C9 1.422 (7) C6—H6 0.9300
N2—C14 1.457 (6) C7—H7 0.9300
C1—C2 1.495 (7) C8—H8 0.9300
C2—C3 1.411 (6) C10—H10 0.9300
C2—C8 1.386 (6) C11—H11 0.9300
C3—C4 1.412 (6) C12—H12 0.9300
C4—C5 1.423 (7) C13—H13 0.9300
Co1···O4 2.807 (4) C3···C8ix 3.398 (6)
Co1···N2 3.488 (4) C3···C13iv 3.347 (7)
Co1···O5ii 2.867 (5) C4···C8ix 3.496 (6)
Co1···N2ii 3.404 (4) C4···C2ix 3.583 (6)
Co1···C13ii 3.923 (6) C4···C12iv 3.421 (7)
O1···C11iii 3.351 (7) C5···O4 3.417 (7)
O1···C12iii 3.230 (7) C6···C2ix 3.499 (6)
O2···N2i 3.057 (5) C6···C1ix 3.421 (7)
O2···C9i 2.946 (6) C7···C2ix 3.596 (6)
O2···C14i 3.030 (6) C7···C3ix 3.509 (6)
O2···O3 2.766 (4) C8···C3ix 3.398 (6)
O2···N2iv 3.126 (5) C8···O5x 3.295 (6)
O2···O4i 2.961 (6) C8···C4ix 3.496 (6)
O2···N1i 2.836 (5) C11···C13xi 3.549 (8)
O3···O2 2.766 (4) C11···O1xii 3.351 (7)
O3···O3i 2.444 (4) C12···C4viii 3.421 (7)
O3···N1 2.806 (5) C12···O1xii 3.230 (7)
O3···C13iv 3.334 (6) C12···C3viii 3.510 (7)
O3···C5 2.891 (6) C12···C13xi 3.437 (8)
O4···Co1 2.807 (4) C12···C12xi 3.351 (8)
O4···N1 2.640 (5) C13···C11xi 3.549 (8)
O4···C5 3.417 (7) C13···Co1vi 3.923 (6)
O4···O2i 2.961 (6) C13···C3viii 3.347 (7)
O5···C8v 3.295 (6) C13···C12xi 3.437 (8)
O5···Co1vi 2.867 (5) C13···O3viii 3.334 (6)
O1···H11iii 2.8100 C14···O2i 3.030 (6)
O1···H8 2.3700 C1···H12iii 3.0400
O1···H12iii 2.5800 C5···H10 2.8300
O2···H12iii 2.9100 C8···H5iv 3.0700
O4···H7vii 2.8800 C10···H5 2.6800
O4···H12iv 2.8100 H5···C10 2.6800
O5···H13 2.3400 H5···H6 2.2300
O5···H6vii 2.8200 H5···H10 2.5900
O5···H8v 2.5500 H5···C8viii 3.0700
N1···O3 2.806 (5) H6···O5xiii 2.8200
N1···O4 2.640 (5) H6···H5 2.2300
N1···N2 2.968 (5) H7···O4xiii 2.8800
N1···C3 3.040 (6) H7···H13x 2.3700
N1···O2i 2.836 (5) H8···O1 2.3700
N2···Co1 3.488 (4) H8···O5x 2.5500
N2···N1 2.968 (5) H10···C5 2.8300
N2···Co1vi 3.404 (4) H10···H5 2.5900
N2···O2i 3.057 (5) H11···O1xii 2.8100
N2···O2viii 3.126 (5) H12···O1xii 2.5800
C1···C6ix 3.421 (7) H12···O2xii 2.9100
C2···C6ix 3.499 (6) H12···C1xii 3.0400
C2···C4ix 3.583 (6) H12···O4viii 2.8100
C2···C7ix 3.596 (6) H13···O5 2.3400
C3···C12iv 3.510 (7) H13···H7v 2.3700
C3···C7ix 3.509 (6)
O3—Co1—N1 92.51 (14) C4—C6—C7 121.5 (5)
O2i—Co1—O3 171.54 (13) C6—C7—C8 118.1 (4)
O3—Co1—O3i 78.42 (11) C2—C8—C7 123.9 (5)
O2i—Co1—N1 95.83 (14) N1—C9—C10 119.0 (4)
O3i—Co1—N1 170.41 (14) N1—C9—C14 123.2 (4)
O2i—Co1—O3i 93.33 (12) C10—C9—C14 117.8 (5)
Co1i—O2—C1 130.1 (3) C9—C10—C11 120.2 (5)
Co1—O3—C3 130.6 (2) C10—C11—C12 121.7 (5)
Co1—O3—Co1i 101.58 (12) C11—C12—C13 118.6 (5)
Co1i—O3—C3 127.7 (2) C12—C13—C14 121.0 (5)
Co1—N1—C5 124.1 (3) N2—C14—C9 122.8 (5)
Co1—N1—C9 121.2 (3) N2—C14—C13 116.5 (4)
C5—N1—C9 114.7 (4) C9—C14—C13 120.8 (5)
O4—N2—O5 122.0 (5) N1—C5—H5 116.00
O4—N2—C14 119.2 (4) C4—C5—H5 116.00
O5—N2—C14 118.6 (4) C4—C6—H6 119.00
O1—C1—O2 121.3 (5) C7—C6—H6 119.00
O1—C1—C2 117.9 (5) C6—C7—H7 121.00
O2—C1—C2 120.8 (4) C8—C7—H7 121.00
C1—C2—C3 125.1 (4) C2—C8—H8 118.00
C1—C2—C8 117.1 (4) C7—C8—H8 118.00
C3—C2—C8 117.8 (4) C9—C10—H10 120.00
O3—C3—C2 121.6 (4) C11—C10—H10 120.00
O3—C3—C4 119.4 (4) C10—C11—H11 119.00
C2—C3—C4 119.0 (4) C12—C11—H11 119.00
C3—C4—C5 125.2 (4) C11—C12—H12 121.00
C3—C4—C6 119.8 (4) C13—C12—H12 121.00
C5—C4—C6 115.1 (4) C12—C13—H13 120.00
N1—C5—C4 128.1 (5) C14—C13—H13 120.00
N1—Co1—O3—C3 0.1 (3) O2—C1—C2—C3 11.4 (7)
N1—Co1—O3—Co1i −176.86 (15) O2—C1—C2—C8 −169.5 (4)
O3i—Co1—O3—C3 176.9 (4) C1—C2—C3—O3 −1.7 (6)
O3i—Co1—O3—Co1i −0.02 (14) C1—C2—C3—C4 179.0 (4)
O3—Co1—N1—C5 −0.5 (4) C8—C2—C3—O3 179.1 (4)
O3—Co1—N1—C9 −179.7 (3) C8—C2—C3—C4 −0.2 (6)
O2i—Co1—N1—C5 178.1 (4) C1—C2—C8—C7 179.9 (4)
O2i—Co1—N1—C9 −1.2 (3) C3—C2—C8—C7 −0.9 (7)
N1—Co1—O2i—C1i 168.2 (4) O3—C3—C4—C5 1.8 (6)
O3—Co1—O3i—Co1i 0.02 (14) O3—C3—C4—C6 −178.2 (4)
O3—Co1—O3i—C3i 177.1 (3) C2—C3—C4—C5 −179.0 (4)
Co1i—O2—C1—O1 166.4 (4) C2—C3—C4—C6 1.1 (6)
Co1i—O2—C1—C2 −15.3 (7) C3—C4—C5—N1 −2.4 (8)
Co1—O3—C3—C2 −179.9 (3) C6—C4—C5—N1 177.6 (4)
Co1—O3—C3—C4 −0.7 (5) C3—C4—C6—C7 −1.0 (7)
Co1i—O3—C3—C2 −3.7 (5) C5—C4—C6—C7 179.0 (4)
Co1i—O3—C3—C4 175.5 (3) C4—C6—C7—C8 0.0 (7)
Co1—N1—C5—C4 1.6 (7) C6—C7—C8—C2 1.0 (7)
C9—N1—C5—C4 −179.1 (4) N1—C9—C10—C11 179.2 (5)
Co1—N1—C9—C10 116.1 (4) C14—C9—C10—C11 −1.7 (8)
Co1—N1—C9—C14 −63.1 (5) N1—C9—C14—N2 −2.0 (7)
C5—N1—C9—C10 −63.3 (6) N1—C9—C14—C13 −180.0 (4)
C5—N1—C9—C14 117.6 (5) C10—C9—C14—N2 178.8 (5)
O4—N2—C14—C9 −1.4 (7) C10—C9—C14—C13 0.9 (7)
O4—N2—C14—C13 176.6 (5) C9—C10—C11—C12 1.2 (9)
O5—N2—C14—C9 −177.2 (5) C10—C11—C12—C13 0.0 (9)
O5—N2—C14—C13 0.8 (7) C11—C12—C13—C14 −0.8 (8)
O1—C1—C2—C3 −170.3 (5) C12—C13—C14—N2 −177.7 (5)
O1—C1—C2—C8 8.9 (7) C12—C13—C14—C9 0.4 (8)

Symmetry codes: (i) −x+2, −y, −z+1; (ii) −x+2, y−1/2, −z+1/2; (iii) x, y, z+1; (iv) x, −y+1/2, z+1/2; (v) x+1, −y+1/2, z−1/2; (vi) −x+2, y+1/2, −z+1/2; (vii) x+1, y, z; (viii) x, −y+1/2, z−1/2; (ix) −x+1, −y, −z+1; (x) x−1, −y+1/2, z+1/2; (xi) −x+2, −y, −z; (xii) x, y, z−1; (xiii) x−1, y, z.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C8—H8···O1 0.93 2.37 2.713 (7) 102
C8—H8···O5x 0.93 2.55 3.295 (6) 138
C12—H12···O1xii 0.93 2.58 3.230 (7) 128
C13—H13···O5 0.93 2.34 2.657 (7) 100

Symmetry codes: (x) x−1, −y+1/2, z+1/2; (xii) x, y, z−1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SU2076).

References

  1. Adams, H., Clunas, S., Fenton, D. E., Handley, G. & McHugh, P. E. (2002). Inorg. Chem. Commun.5, 1044–1047.
  2. Brown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244–247.
  3. Bruker (2005). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  5. Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
  6. Tone, K., Sakiyama, H., Mikuriya, M., Yamasaki, M. & Nishida, Y. (2007). Inorg. Chem. Commun.10, 944–947.
  7. Li, W.-Q., Feng, X., Feng, Y.-L. & Wen, Y.-H. (2008). Chin. J. Inorg. Chem.24, 873–879.
  8. Zheng, X.-J., Jin, L.-P., Lu, S.-Z. & Zheng, Y.-Q. (2003). Z. Anorg. Allg. Chem.629, 2577–2584.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808042487/su2076sup1.cif

e-65-0m119-sup1.cif (22.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808042487/su2076Isup2.hkl

e-65-0m119-Isup2.hkl (104.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES