Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Dec 20;65(Pt 1):m123. doi: 10.1107/S1600536808043018

Bis(2-amino-3-nitro­pyridinium) dichromate(VI)

Samah Akriche a,*, Mohamed Rzaigui a
PMCID: PMC2968023  PMID: 21581487

Abstract

The title compound, (C5H6N3O2)2[Cr2O7], consists of 2-amino-3-nitro­pyridinium cations and discrete dichromate anions linked together by N—H⋯O and C—H⋯O hydrogen bonds, forming thick layers parallel to (101). Layer cohesion is ensured by N—H⋯O hydrogen bonding in addition to electrostatic and van der Waals inter­actions, forming a three-dimensional framework. The dichromate anion is located on a twofold axis that passes through its bridging O atom.

Related literature

For related structures, see: Akriche & Rzaigui (2000); Khadhrani et al. (2006); Nicoud et al. (1997); Panunto et al. (1987); Sieroń (2007); Le Fur et al. (1998). For a discussion of hydrogen bonding, see: Desiraju (1989, 1995).graphic file with name e-65-0m123-scheme1.jpg

Experimental

Crystal data

  • (C5H6N3O2)2[Cr2O7]

  • M r = 496.26

  • Monoclinic, Inline graphic

  • a = 14.799 (2) Å

  • b = 7.464 (3) Å

  • c = 17.870 (5) Å

  • β = 116.71 (4)°

  • V = 1763.3 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.31 mm−1

  • T = 298 K

  • 0.25 × 0.23 × 0.19 mm

Data collection

  • Enraf–Nonius TurboCAD-4 diffractometer

  • Absorption correction: none

  • 3444 measured reflections

  • 2123 independent reflections

  • 1562 reflections with I > 2σ(I)

  • R int = 0.021

  • 2 standard reflections frequency: 120 min intensity decay: 3%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.039

  • wR(F 2) = 0.106

  • S = 1.04

  • 2123 reflections

  • 132 parameters

  • H-atom parameters constrained

  • Δρmax = 0.44 e Å−3

  • Δρmin = −0.37 e Å−3

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-32 for Windows (Farrugia, 1998); DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: WinGX publication routines (Farrugia, 1999).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808043018/dn2417sup1.cif

e-65-0m123-sup1.cif (14.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808043018/dn2417Isup2.hkl

e-65-0m123-Isup2.hkl (102.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O2 0.86 1.87 2.707 (3) 165
N2—H2A⋯O4 0.86 2.17 2.974 (4) 155
N2—H2B⋯O6 0.86 2.06 2.654 (4) 125
N2—H2B⋯O6i 0.86 2.59 3.061 (4) 116
C3—H3⋯O4ii 0.93 2.58 3.494 (4) 167
C4—H4⋯O3iii 0.93 2.50 3.337 (4) 150
C5—H5⋯O2iv 0.93 2.34 3.232 (4) 160

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

supplementary crystallographic information

Comment

A new engineering strategy using organic-inorganic hybrid materials have appeared over the past years. The challenge was to combine the advantages of organic crystals and those of the inorganic materials. As a part of our study of crystal packing in amino-nitro "push-pull" system, a new organic-inorganic salt, bis (2-amino-3-nitropyridinium) dichromate (I) have been synthesized.

The dichromate anion has a binary internal symmetry since its bridging oxygen atom is located on a twofold axis, and so is built by only one independent (CrO4) group. This later with one independent (2-NH2-3-NO2C5H3NH)+ cation constitute the asymmetric unit of (I) (Fig. 1).

As expected, the main geometrical features of anion agree with those previously observed for this group in other coumpounds (Sieroń, 2007; Khadhrani et al.,2006). The bond lengths and the angles within the cation are comparable with those observed for 2-amino-3-nitropyridinium dihydrogenphosphate (Akriche et al.,2000), 2-amino-3-nitropyridinium hydrogensulfate(Le Fur et al., 1998) and 2-amino-3-nitropyridinium chloride (Nicoud et al.,1997).

The dichromate and organic entities manifest different interactions (electrostatic, H-bonds, Van Der Waals) to keep up the three-dimensionel network cohesion (Fig. 2). The main links are from the N—H···O bonds (Table 1) with H···O bond lengths falling in the range from 1.87–2.59 Å.

Long C—H···O contacts occur between cations and cation-anion moities with C···O bond lengths ranging from 3.494 (4)–3.232 (4)Å (Desiraju, 1989; Desiraju, 1995).

It's worth noticing the intracation contact N2—H2B···O6 (see Table 1 for symmetry code) which is always present in nitroaniline in which nitro and amino groups are ortho to one another, as clearly shown in a study of hydrogen patterns of nitroaniline derivatives (Panunto et al., 1987). This situation precludes the rotation of the nitro group with respect to pyridinium ring. The angle between the planes of the NO2 group and the heterocycle is 7.98° for cation, indicating a coplanar geometry.

Experimental

0.004 mol of 2-amino-3-nitropyridine was dissolved in 20 ml of pure acetic acid. 5 ml solution containing 0.004 mol of CrO3 was added drop by drop under stirring at 333 K. The obtained solution is slowly evaporated at the ambiant temperature. After some days, Brown single crystals of the title compound are formed in the reactionnel midle.

Figures

Fig. 1.

Fig. 1.

An ORTEP view of (I) with the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii. Hydrogen bonds are represented as dashed lines. [Symmetry code: (i) -x+1, y, -z+1/2]

Fig. 2.

Fig. 2.

Projection of (I) along the b axis.

Crystal data

(C5H6N3O2)2[Cr2O7] F(000) = 1000
Mr = 496.26 Dx = 1.869 Mg m3
Monoclinic, C2/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2yc Cell parameters from 25 reflections
a = 14.799 (2) Å θ = 9–11°
b = 7.464 (3) Å µ = 1.31 mm1
c = 17.870 (5) Å T = 298 K
β = 116.71 (4)° Diamond-shaped, brown
V = 1763.3 (11) Å3 0.25 × 0.23 × 0.19 mm
Z = 4

Data collection

Enraf–Nonius TurboCAD-4 diffractometer Rint = 0.021
Radiation source: fine-focus sealed tube θmax = 28.0°, θmin = 2.6°
graphite h = −19→19
non–profiled ω scans k = 0→9
3444 measured reflections l = −10→23
2123 independent reflections 2 standard reflections every 120 min
1562 reflections with I > 2σ(I) intensity decay: 3%

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.106 H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0546P)2 + 0.8978P] where P = (Fo2 + 2Fc2)/3
2123 reflections (Δ/σ)max = 0.002
132 parameters Δρmax = 0.44 e Å3
0 restraints Δρmin = −0.37 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cr1 0.51253 (3) 0.65455 (6) 0.34930 (3) 0.03488 (15)
O1 0.5000 0.5931 (6) 0.2500 0.0760 (11)
O2 0.63121 (14) 0.6372 (3) 0.41598 (13) 0.0434 (5)
O3 0.4736 (2) 0.8522 (3) 0.35084 (18) 0.0672 (7)
O4 0.44934 (17) 0.5121 (3) 0.37400 (14) 0.0544 (6)
O5 0.7372 (2) −0.1246 (3) 0.67939 (16) 0.0607 (7)
O6 0.6258 (2) −0.0987 (3) 0.55077 (17) 0.0687 (7)
N1 0.70398 (18) 0.4291 (3) 0.55486 (16) 0.0416 (6)
H1 0.6730 0.5020 0.5139 0.050*
N2 0.58479 (19) 0.2213 (4) 0.47828 (16) 0.0544 (7)
H2A 0.5568 0.3004 0.4397 0.065*
H2B 0.5594 0.1155 0.4719 0.065*
N3 0.69260 (19) −0.0377 (3) 0.61537 (17) 0.0425 (6)
C1 0.6667 (2) 0.2622 (4) 0.54739 (17) 0.0351 (6)
C2 0.72292 (19) 0.1482 (3) 0.61610 (16) 0.0317 (5)
C3 0.8061 (2) 0.2088 (4) 0.68474 (18) 0.0402 (6)
H3 0.8409 0.1320 0.7296 0.048*
C4 0.8388 (2) 0.3827 (4) 0.6881 (2) 0.0499 (8)
H4 0.8953 0.4252 0.7345 0.060*
C5 0.7856 (2) 0.4899 (4) 0.6213 (2) 0.0494 (8)
H5 0.8063 0.6077 0.6218 0.059*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cr1 0.0320 (2) 0.0429 (3) 0.0274 (2) 0.0004 (2) 0.01125 (17) 0.00519 (19)
O1 0.073 (2) 0.122 (3) 0.0321 (17) 0.000 0.0232 (17) 0.000
O2 0.0357 (9) 0.0461 (11) 0.0406 (11) −0.0011 (9) 0.0101 (9) 0.0065 (9)
O3 0.0642 (15) 0.0518 (14) 0.0762 (18) 0.0208 (12) 0.0233 (14) 0.0154 (12)
O4 0.0483 (12) 0.0604 (14) 0.0583 (13) −0.0093 (11) 0.0272 (11) 0.0052 (11)
O5 0.0850 (18) 0.0428 (13) 0.0624 (15) 0.0050 (12) 0.0402 (15) 0.0172 (11)
O6 0.0712 (16) 0.0492 (13) 0.0703 (17) −0.0253 (12) 0.0182 (14) −0.0142 (12)
N1 0.0445 (13) 0.0357 (12) 0.0502 (15) 0.0080 (11) 0.0263 (12) 0.0123 (11)
N2 0.0428 (14) 0.0691 (18) 0.0389 (14) −0.0034 (13) 0.0072 (12) 0.0105 (13)
N3 0.0505 (14) 0.0339 (12) 0.0511 (15) −0.0035 (11) 0.0298 (12) −0.0016 (12)
C1 0.0334 (12) 0.0418 (15) 0.0339 (14) 0.0036 (12) 0.0186 (11) 0.0044 (12)
C2 0.0343 (12) 0.0304 (12) 0.0323 (13) 0.0013 (11) 0.0168 (11) 0.0004 (11)
C3 0.0407 (14) 0.0429 (15) 0.0327 (14) 0.0044 (12) 0.0128 (12) 0.0036 (12)
C4 0.0453 (16) 0.0486 (18) 0.0464 (17) −0.0110 (14) 0.0122 (14) −0.0121 (14)
C5 0.0550 (18) 0.0321 (15) 0.068 (2) −0.0080 (13) 0.0342 (17) −0.0074 (14)

Geometric parameters (Å, °)

Cr1—O3 1.588 (2) N2—H2A 0.8600
Cr1—O4 1.603 (2) N2—H2B 0.8600
Cr1—O2 1.625 (2) N3—C2 1.457 (3)
Cr1—O1 1.7601 (14) C1—C2 1.416 (4)
O1—Cr1i 1.7601 (14) C2—C3 1.366 (4)
O5—N3 1.219 (3) C3—C4 1.377 (4)
O6—N3 1.221 (4) C3—H3 0.9300
N1—C5 1.336 (4) C4—C5 1.356 (5)
N1—C1 1.344 (4) C4—H4 0.9300
N1—H1 0.8600 C5—H5 0.9300
N2—C1 1.320 (4)
O3—Cr1—O4 110.50 (14) N2—C1—N1 118.1 (3)
O3—Cr1—O2 110.01 (13) N2—C1—C2 127.3 (3)
O4—Cr1—O2 108.49 (11) N1—C1—C2 114.6 (2)
O3—Cr1—O1 112.62 (17) C3—C2—C1 121.3 (3)
O4—Cr1—O1 107.14 (15) C3—C2—N3 118.2 (2)
O2—Cr1—O1 107.93 (9) C1—C2—N3 120.4 (2)
Cr1i—O1—Cr1 149.8 (3) C2—C3—C4 120.5 (3)
C5—N1—C1 124.7 (3) C2—C3—H3 119.7
C5—N1—H1 117.7 C4—C3—H3 119.7
C1—N1—H1 117.7 C5—C4—C3 117.7 (3)
C1—N2—H2A 120.0 C5—C4—H4 121.2
C1—N2—H2B 120.0 C3—C4—H4 121.2
H2A—N2—H2B 120.0 N1—C5—C4 121.1 (3)
O5—N3—O6 123.8 (3) N1—C5—H5 119.4
O5—N3—C2 117.6 (3) C4—C5—H5 119.4
O6—N3—C2 118.6 (3)

Symmetry codes: (i) −x+1, y, −z+1/2.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1···O2 0.86 1.87 2.707 (3) 165
N2—H2A···O4 0.86 2.17 2.974 (4) 155
N2—H2B···O6 0.86 2.06 2.654 (4) 125
N2—H2B···O6ii 0.86 2.59 3.061 (4) 116
C3—H3···O4iii 0.93 2.58 3.494 (4) 167
C4—H4···O3iv 0.93 2.50 3.337 (4) 150
C5—H5···O2v 0.93 2.34 3.232 (4) 160

Symmetry codes: (ii) −x+1, −y, −z+1; (iii) x+1/2, −y+1/2, z+1/2; (iv) x+1/2, −y+3/2, z+1/2; (v) −x+3/2, −y+3/2, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DN2417).

References

  1. Akriche, S. & Rzaigui, M. (2000). Z. Kristallogr. New Cryst. Struct 215, 617–618.
  2. Brandenburg, K. & Putz, H. (2005). DIAMOND Crystal impact GbR, Bonn, Germany.
  3. Desiraju, G. R. (1989). Crystal Engineering: The Design of Organic Solids, Vol 54. New York: Elsevier.
  4. Desiraju, G. R. (1995). Angew. Chem. Int. Ed. Engl.34, 2311–2321.
  5. Enraf–Nonius (1994). CAD-4 EXPRESS Enraf–Nonius, Delft, The Netherlands.
  6. Farrugia, L. J. (1998). ORTEP-32 for Windows University of Glasgow, Scotland.
  7. Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  8. Harms, K. & Wocadlo, S. (1996). XCAD4 University of Marburg, Germany.
  9. Khadhrani, H., Ben Smaïl, R., Driss, A. & Jouini, T. (2006). Acta Cryst. E62, m146–m148.
  10. Le Fur, Y., Masse, R. & Nicoud, J. F. (1998). New J. Chem. pp. 159–163.
  11. Nicoud, J. F., Masse, R., Bourgogne, C. & Evans, C. (1997). J. Mater. Chem.7, 35–39.
  12. Panunto, T. W., Urbanczyk-Lipkowska, Z., Johnson, R. & Etter, M. C. (1987). J. Am. Chem. Soc.109, 7786–7797.
  13. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  14. Sieroń, L. (2007). Acta Cryst. E63, m2068.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808043018/dn2417sup1.cif

e-65-0m123-sup1.cif (14.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808043018/dn2417Isup2.hkl

e-65-0m123-Isup2.hkl (102.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES