Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Dec 13;65(Pt 1):o107. doi: 10.1107/S1600536808041792

4-Cyano­benzaldehyde thio­semi­carbazone

De-Hong Wu a,*, You-Hong Zhang a, Zhu-Feng Li a, Yong-Hua Li a
PMCID: PMC2968031  PMID: 21581570

Abstract

The mol­ecule of the title compound, C9H8N4S, adopts an E configuration about both the C=N and C—NH bonds. In the crystal structure, adjacent mol­ecules are linked by inter­molecular N—H⋯S hydrogen-bonding inter­actions, forming chains running parallel to the b axis.

Related literature

For a general background to thio­semicarbazone compounds, see: Casas et al. (2000); Tarafder et al. (2000); Deschamps et al. (2003); Liu et al. (1999); Wu et al. (2000). For reference structural data, see: Sutton (1965).graphic file with name e-65-0o107-scheme1.jpg

Experimental

Crystal data

  • C9H8N4S

  • M r = 204.26

  • Monoclinic, Inline graphic

  • a = 12.284 (6) Å

  • b = 8.209 (4) Å

  • c = 10.058 (3) Å

  • β = 92.20 (3)°

  • V = 1013.5 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.28 mm−1

  • T = 291 (2) K

  • 0.25 × 0.17 × 0.15 mm

Data collection

  • Rigaku Mercury2 diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005) T min = 0.94, T max = 0.96

  • 10019 measured reflections

  • 2309 independent reflections

  • 1596 reflections with I > 2σ(I)

  • R int = 0.055

Refinement

  • R[F 2 > 2σ(F 2)] = 0.055

  • wR(F 2) = 0.109

  • S = 1.01

  • 2309 reflections

  • 127 parameters

  • H-atom parameters constrained

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.19 e Å−3

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808041792/rz2264sup1.cif

e-65-0o107-sup1.cif (14.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808041792/rz2264Isup2.hkl

e-65-0o107-Isup2.hkl (113.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯S1i 0.86 2.50 3.355 (2) 171
N1—H1B⋯S1ii 0.86 2.63 3.399 (3) 150

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

The authors thank the Start-up Projects for Postdoctoral Research Funds of Southeast University (grant No. 1112000048).

supplementary crystallographic information

Comment

Thiosemicarbazones constitute an important class of N,S donors due to their propensity to react with a wide range of metals (Casas et al., 2000). Schiff bases show potential as antimicrobial and anticancer agents (Tarafder et al., 2000; Deschamps et al., 2003) and so have biochemical and pharmacological applications. It has been postulated that extensive electron delocalization in the thiosemicarbazone moiety helps the free thiosemicarbazone ligands and their metal complexes to exhibit SHG (second harmonic generation) efficiency (Liu et al., 1999; Wu et al., 2000). As part of a research on non-linear optical materials, specifically thiosemicarbazones and their metal complexes, we report here the crystal structure of a new Schiff base compound derived from thiosemicarbazide and 4-cyanobenzaldehyde.

In the title compound (Fig. 1), the thiosemicarbazone moiety is nearly planar (maximum deviation 0.113 (2) Å for atom N2) and shows an E configuration about both the C1═N2 and C2═N3 bonds. The molecule is not strictly planar, the dihedral angle between the thiosemicarbazone moiety and the phenyl ring being 15.8 (6)°. The C—S bond distance of 1.689 (2) Å agrees well with similar bonds in related compounds, being intermediate between the value of 1.82Å for a C—S single bond and 1.56 Å for a C═S double bond (Sutton, 1965). The C1—N2 bond distance (1.344 (3)Å) is indicative of some double-bond character, suggesting extensive electron delocalization in the whole molecule. The C1—N1 bond distance of 1.316 (3)Å is also indicative of some double-bond character. All the bond distances except for the C6—C9 bond length (1.447 (3) Å) fall within the normal range. In the crystal packing, adjacent molecules are linked by N—H···S hydrogen bonds (Table 1) to form chains running parallel to the b axis.

Experimental

The title compound was synthesized by refluxing 4-cyanobenzaldehyde (1.05 g, 8 mmol) and thiosemicarbazide (0.73 g, 8 mmol) in absolute ethanol (40 ml) for 6 h. After cooling to room temperature, the white solid formed was isolated and dried under vacuum (1.47 g, yield 90%). Single crystals suitable for X-ray structure analysis were obtained by slow evaporation of a methanol solution.

Refinement

H atoms were placed in calculated positions and refined using a riding model, with N—H = 0.86 Å, C—H = 0.93 Å and with Uiso(H) = 1.2 Ueq(C, N).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, showing the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.

Crystal data

C9H8N4S F(000) = 424
Mr = 204.26 Dx = 1.339 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 1740 reflections
a = 12.284 (6) Å θ = 2.5–27.5°
b = 8.209 (4) Å µ = 0.28 mm1
c = 10.058 (3) Å T = 291 K
β = 92.20 (3)° Block, colourless
V = 1013.5 (8) Å3 0.25 × 0.17 × 0.15 mm
Z = 4

Data collection

Rigaku Mercury2 diffractometer 2309 independent reflections
Radiation source: fine-focus sealed tube 1596 reflections with I > 2σ(I)
graphite Rint = 0.055
Detector resolution: 13.6612 pixels mm-1 θmax = 27.5°, θmin = 3.0°
CCD_Profile_fitting scans h = −15→15
Absorption correction: multi-scan (CrystalClear; Rigaku, 2005) k = −10→10
Tmin = 0.94, Tmax = 0.96 l = −12→13
10019 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.055 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.109 H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0258P)2 + 0.6908P] where P = (Fo2 + 2Fc2)/3
2309 reflections (Δ/σ)max < 0.001
127 parameters Δρmax = 0.17 e Å3
0 restraints Δρmin = −0.19 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.07786 (19) 0.5792 (3) 0.6753 (2) 0.0446 (6)
C2 0.18757 (19) 0.2982 (3) 0.4587 (2) 0.0454 (6)
H2 0.1575 0.2048 0.4946 0.054*
C3 0.26310 (18) 0.2841 (3) 0.3506 (2) 0.0426 (6)
C4 0.30116 (19) 0.1304 (3) 0.3163 (2) 0.0482 (6)
H4 0.2748 0.0384 0.3583 0.058*
C5 0.3781 (2) 0.1135 (3) 0.2198 (2) 0.0532 (7)
H5 0.4029 0.0108 0.1964 0.064*
C6 0.4175 (2) 0.2517 (3) 0.1588 (2) 0.0509 (6)
C7 0.3777 (2) 0.4058 (3) 0.1891 (2) 0.0541 (7)
H7 0.4028 0.4973 0.1452 0.065*
C8 0.3008 (2) 0.4214 (3) 0.2846 (2) 0.0500 (6)
H8 0.2740 0.5239 0.3052 0.060*
C9 0.5021 (2) 0.2377 (4) 0.0632 (3) 0.0616 (7)
N1 0.1138 (2) 0.7144 (3) 0.6221 (2) 0.0717 (8)
H1A 0.1485 0.7106 0.5496 0.086*
H1B 0.1026 0.8065 0.6600 0.086*
N2 0.09749 (15) 0.4384 (2) 0.61235 (17) 0.0436 (5)
H2A 0.0694 0.3490 0.6396 0.052*
N3 0.16254 (15) 0.4379 (2) 0.50426 (18) 0.0441 (5)
N4 0.5709 (2) 0.2293 (3) −0.0102 (3) 0.0853 (9)
S1 0.01195 (6) 0.57476 (8) 0.81966 (6) 0.0544 (2)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0526 (14) 0.0390 (12) 0.0423 (12) 0.0019 (12) 0.0033 (11) 0.0001 (11)
C2 0.0475 (14) 0.0477 (14) 0.0414 (13) −0.0021 (12) 0.0063 (11) −0.0010 (11)
C3 0.0399 (13) 0.0479 (14) 0.0402 (12) −0.0015 (11) 0.0030 (10) −0.0042 (10)
C4 0.0505 (14) 0.0477 (14) 0.0467 (13) −0.0025 (12) 0.0053 (12) −0.0032 (11)
C5 0.0533 (15) 0.0568 (17) 0.0498 (14) 0.0051 (13) 0.0050 (12) −0.0093 (12)
C6 0.0463 (14) 0.0659 (17) 0.0406 (13) 0.0036 (14) 0.0050 (11) −0.0039 (13)
C7 0.0540 (15) 0.0593 (17) 0.0496 (14) −0.0012 (14) 0.0094 (12) 0.0056 (13)
C8 0.0533 (15) 0.0469 (14) 0.0500 (14) 0.0026 (13) 0.0072 (11) −0.0046 (12)
C9 0.0626 (17) 0.0696 (19) 0.0535 (15) 0.0057 (15) 0.0115 (14) 0.0018 (14)
N1 0.112 (2) 0.0411 (13) 0.0645 (15) −0.0058 (13) 0.0407 (14) −0.0043 (11)
N2 0.0546 (12) 0.0375 (11) 0.0396 (10) 0.0007 (10) 0.0111 (9) −0.0008 (9)
N3 0.0492 (11) 0.0464 (12) 0.0372 (10) 0.0016 (10) 0.0068 (8) −0.0027 (9)
N4 0.088 (2) 0.091 (2) 0.0797 (18) 0.0167 (17) 0.0398 (16) 0.0100 (16)
S1 0.0765 (5) 0.0431 (3) 0.0448 (3) 0.0083 (4) 0.0184 (3) 0.0010 (3)

Geometric parameters (Å, °)

C1—N1 1.316 (3) C5—H5 0.9300
C1—N2 1.344 (3) C6—C7 1.394 (4)
C1—S1 1.689 (2) C6—C9 1.447 (3)
C2—N3 1.277 (3) C7—C8 1.378 (3)
C2—C3 1.461 (3) C7—H7 0.9300
C2—H2 0.9300 C8—H8 0.9300
C3—C4 1.394 (3) C9—N4 1.146 (3)
C3—C8 1.396 (3) N1—H1A 0.8600
C4—C5 1.387 (3) N1—H1B 0.8600
C4—H4 0.9300 N2—N3 1.374 (2)
C5—C6 1.385 (4) N2—H2A 0.8600
N1—C1—N2 117.7 (2) C5—C6—C9 120.1 (3)
N1—C1—S1 123.15 (19) C7—C6—C9 118.9 (2)
N2—C1—S1 119.15 (18) C8—C7—C6 119.4 (2)
N3—C2—C3 120.5 (2) C8—C7—H7 120.3
N3—C2—H2 119.8 C6—C7—H7 120.3
C3—C2—H2 119.8 C7—C8—C3 120.4 (2)
C4—C3—C8 119.5 (2) C7—C8—H8 119.8
C4—C3—C2 119.0 (2) C3—C8—H8 119.8
C8—C3—C2 121.4 (2) N4—C9—C6 178.1 (3)
C5—C4—C3 120.5 (2) C1—N1—H1A 120.0
C5—C4—H4 119.7 C1—N1—H1B 120.0
C3—C4—H4 119.7 H1A—N1—H1B 120.0
C6—C5—C4 119.1 (2) C1—N2—N3 119.73 (19)
C6—C5—H5 120.4 C1—N2—H2A 120.1
C4—C5—H5 120.4 N3—N2—H2A 120.1
C5—C6—C7 121.0 (2) C2—N3—N2 116.2 (2)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N2—H2A···S1i 0.86 2.50 3.355 (2) 171
N1—H1B···S1ii 0.86 2.63 3.399 (3) 150

Symmetry codes: (i) −x, y−1/2, −z+3/2; (ii) −x, y+1/2, −z+3/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RZ2264).

References

  1. Casas, J. S., Garcia-Tasende, M. S. & Sordo, J. (2000). Coord. Chem. Rev.209, 197–261.
  2. Deschamps, P., Kulkarni, P. P. & Sarkar, B. (2003). Inorg. Chem.42, 7366–7368. [DOI] [PubMed]
  3. Liu, Z.-H., Duan, C.-Y., Hu, J. & You, X.-Z. (1999). Inorg. Chem.38, 1719–1724. [DOI] [PubMed]
  4. Rigaku (2005). CrystalClear Rigaku Corporation, Tokyo, Japan.
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  6. Sutton, L. E. (1965). Tables of Interatomic Distances and Configurations in Molecules and Ions, Suppl. London: The Chemical Society.
  7. Tarafder, M. T. H., Ali, M. A., Wee, D. J., Azahari, K., Silong, S. & Crouse, K. A. (2000). Transition Met. Chem.25, 456–460.
  8. Wu, D.-H., He, C., Duan, C.-Y. & You, X.-Z. (2000). Acta Cryst. C56, 1336–1337. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808041792/rz2264sup1.cif

e-65-0o107-sup1.cif (14.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808041792/rz2264Isup2.hkl

e-65-0o107-Isup2.hkl (113.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES