Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Dec 13;65(Pt 1):o109–o110. doi: 10.1107/S1600536808041603

1,3-Bis[4-(dimethyl­amino)benz­yl]-4,5,6,7-tetra­hydro-1H-1,3-diazepan-2-ium chloride

Hakan Arslan a,b,*, Don VanDerveer c, Yetkin Gök d, İsmail Özdemir d, Bekir Çetinkaya e
PMCID: PMC2968033  PMID: 21581572

Abstract

The title N-heterocyclic carbene derivative, C23H33N4 +·Cl, has been synthesized and characterized by elemental analysis, 1H and 13C NMR, IR spectroscopy and a single-crystal X-ray diffraction study. Ions of the title compound are linked by three C—H⋯Cl inter­actions. The seven-membered 1,3-diazepane ring has a form inter­mediate between twist-chair and twist-boat.

Related literature

For the synthesis, see: Özdemir et al. (2005); Yaşar et al. (2008). For general background, see: Hermann (2002); Littke & Fu (2002); Evans & Boeyens (1989). For puckering parameters, see: Cremer & Pople (1975). For related compounds, see: Arslan et al. (2007a ,b ,c ). For general background to the use of N-heterocyclic carbenes as phosphine mimics and in catalysis, see: Arduengo & Krafczyk (1998); Dullius et al. (1998); Glorius (2007); Hermann & Köcher (1997); Nolan (2006); Regitz (1996). For bond-length data, see: Allen et al. (1987).graphic file with name e-65-0o109-scheme1.jpg

Experimental

Crystal data

  • C23H33N4 +·Cl

  • M r = 400.98

  • Orthorhombic, Inline graphic

  • a = 22.663 (5) Å

  • b = 10.081 (2) Å

  • c = 9.6368 (19) Å

  • V = 2201.7 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.19 mm−1

  • T = 153 (2) K

  • 0.46 × 0.12 × 0.07 mm

Data collection

  • Rigaku Mercury CCD diffractometer

  • Absorption correction: multi-scan (REQAB; Jacobson, 1998) T min = 0.918, T max = 0.987

  • 14704 measured reflections

  • 1947 independent reflections

  • 1481 reflections with I > 2σ(I)

  • R int = 0.053

Refinement

  • R[F 2 > 2σ(F 2)] = 0.059

  • wR(F 2) = 0.160

  • S = 1.10

  • 1947 reflections

  • 130 parameters

  • H-atom parameters constrained

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.30 e Å−3

Data collection: CrystalClear (Rigaku/MSC, 2001); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808041603/hg2445sup1.cif

e-65-0o109-sup1.cif (17.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808041603/hg2445Isup2.hkl

e-65-0o109-Isup2.hkl (95.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1⋯Cl1i 0.96 2.53 3.486 (4) 180
C2—H2A⋯Cl1ii 0.96 2.82 3.688 (3) 151
C4—H4A⋯Cl1ii 0.96 2.81 3.682 (3) 152

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

We thank the Technological and Scientific Research Council of Turkey TÜBİTAK-CNRS [TBAG-U/181 (106 T716)] and İnonu University research fund (BAP 2008/03 Güdümlü) for financial support.

supplementary crystallographic information

Comment

N-heterocyclic carbenes, which can be considered phosphine mimics, have attracted considerable attentionas possible alternatives for widely used phosphine ligands (Regitz, 1996; Hermann & Köcher, 1997; Arduengo & Krafczyk, 1998; Dullius et al., 1998; Evans & Boeyens, 1989; Hermann, 2002; Littke & Fu, 2002). N-heterocyclic carbene-containing metal complexes have also revealed excellent catalytic properties in a wide range of metal-catalyzed transformations (Glorius, 2007; Nolan, 2006). Catalysts containing these ligands are useful in Heck, Suzuki and Sonogashira couplings, Buchwald Hartwig amination, olefin metathesis, hydroformylation and hydrogenation.

In recent years, we have pursued investigations on the synthesis, characterization, crystal structure, and catalytic activities of new N-heterocyclic carbene derivatives (Yaşar et al., 2008; Arslan et al., 2007a, 2007b, 2007c). In the present work, we report the preparation and characterization of a novel N-heterocyclic carbene derivative, 1,3-bis(4-(dimethylamino)benzyl)-4,5,6,7-tetrahydro-1H-1,3-diazepin-2-ium chloride, (I). The ligand was purified by re-crystallization from an ethanol:diethylether mixture (1:2) and was characterized by elemental analysis and 1H and 13C-NMR spectroscopy. The analytical and spectroscopic data are consistent with the proposed structure given in Scheme 1.

The molecular structure of the title compound, (I), is depicted in Fig. 1. The structure consists of a 1,3-bis(4-(dimethylamino)benzyl)-4,5,6,7-tetrahydro-1H-1,3-diazepin-2-ium cation and a Cl-anion. All bond lengths are in normal ranges (Allen et al., 1987). A seven-membered ring should have the chair, the boat, the twist chair or the twist boat according to Cremer & Pople (1975). The conformation of a seven-membered ring can be numerically described by four ring puckering parameters, q2, q3, φ2 and φ3. The 1,3-diazepane ring exhibits a puckered conformation, with puckering parameters Cremer & Pople (1975), q2= 0.374 (3) Å, q3 = 0.462 (3) Å, φ2= 347.1 (4) °, φ3= 115.7 (3)°, and QT= 0.595 (3) Å. The largest deviations from the mean plane are 0.403 (3) Å for atoms C3 and C3A. q2 should be 0 for a 100% twist chair form. According to Cremer & Pople ring-puckering analysis results, the 1,3-diazepane seven-membered ring can be accurately described as an intermediate form between the 44% twist chair form and the 55% twist boat form.

The crystal packing is shown in Fig. 2. Although there are no intramolecular D—H···A contacts, intermolecular C—H···Cl hydrogen bonds link the molecules of (I) into one-dimensional chains extending along the [010] direction (Fig. 3, Table 1) (Macrae et al., 2006).

Experimental

To a solution of 1,4-bis(p-dimethylaminobenzylamino)butane (1 mmol) CH(OEt)3 (30 ml), NH4Cl (1 mmol) was added; the reaction mixture was heated for 18 h at 100 °C (Scheme 2). A white solid was precipitated. Then, the precipitate was crystallized from EtOH-Et2O (1:2) mixture (Özdemir et al., 2005). 1,3-bis(4-(dimethylamino)benzyl)-4,5,6,7-tetrahydro-1H-1,3-diazepin-2-ium chloride: Yield: 3.11 g (92%), M.p. 247–248 °C. 1H NMR (300.13 MHz, DMSO) δ = 1.68 (quintet, J = 6.8 Hz, 4H, NCH2CH2CH2CH2N), 2.89 (s, 12H, p-(CH3)2NC6H4CH2), 3.52 (t, J = 6.8 Hz, 4H, NCH2CH2CH2CH2N), 4.54 (s, 4H, p-(CH3)2NC6H4CH2), 6.73 and 7.27 (d, J =8.4 Hz, 8H, p-(CH3)2NC6H4CH2), 8.87 (s,1H, 2-CH). 13C{1H}NMR (75.47 MHz, DMSO): δ = 24.7, 48.7 (NCH2CH2CH2CH2N), 40.7 (p-(CH3)2NC6H4CH2), 60.1 (p-(CH3)2NC6H4CH2), 112.9, 122.2, 130.1, 151.1 (p-(CH3)2NC6H4CH2), 158.3 (2-CH). Anal. Calcd. for C23H33N4Cl: C, 68.89; H, 8.29; N, 13.97. Found: C, 68.88; H, 8.30; N, 13.94.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, showing the atom-numbering scheme and displacement ellipsoids drawn at the 50% probability level.

Fig. 2.

Fig. 2.

A packing diagram for (I).

Fig. 3.

Fig. 3.

Part of the crystal structure of (I), showing the formation of linear chains of hydrogen-bonded (dashed lines) cations and anions along the [010] direction.

Fig. 4.

Fig. 4.

The formation of the title compound.

Crystal data

C23H33N4+·Cl F(000) = 864
Mr = 400.98 Dx = 1.210 Mg m3
Orthorhombic, Pbcn Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2n 2ab Cell parameters from 5004 reflections
a = 22.663 (5) Å θ = 3.1–26.4°
b = 10.081 (2) Å µ = 0.19 mm1
c = 9.6368 (19) Å T = 153 K
V = 2201.7 (8) Å3 Rod, colorless
Z = 4 0.46 × 0.12 × 0.07 mm

Data collection

Rigaku Mercury CCD diffractometer 1947 independent reflections
Radiation source: Sealed Tube 1481 reflections with I > 2σ(I)
Graphite Monochromator Rint = 0.053
Detector resolution: 14.6306 pixels mm-1 θmax = 25.1°, θmin = 3.1°
ω scans h = −27→23
Absorption correction: multi-scan (REQAB; Jacobson, 1998) k = −12→11
Tmin = 0.918, Tmax = 0.987 l = −11→11
14704 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.059 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.160 H-atom parameters constrained
S = 1.10 w = 1/[σ2(Fo2) + (0.0629P)2 + 3.1587P] where P = (Fo2 + 2Fc2)/3
1947 reflections (Δ/σ)max < 0.001
130 parameters Δρmax = 0.28 e Å3
0 restraints Δρmin = −0.30 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1 0.5000 0.27328 (9) 0.2500 0.0326 (3)
N1 0.53058 (10) 0.3281 (2) 0.8530 (2) 0.0263 (5)
N2 0.81399 (11) 0.3446 (3) 0.8340 (3) 0.0465 (8)
C1 0.5000 0.3809 (4) 0.7500 0.0234 (8)
H1 0.5000 0.4761 0.7500 0.028*
C2 0.54103 (13) 0.1885 (3) 0.8905 (3) 0.0320 (7)
H2A 0.5391 0.1810 0.9897 0.038*
H2B 0.5805 0.1656 0.8631 0.038*
C3 0.49952 (13) 0.0887 (3) 0.8287 (3) 0.0299 (7)
H3A 0.4602 0.1074 0.8599 0.036*
H3B 0.5100 0.0019 0.8616 0.036*
C4 0.56701 (12) 0.4207 (3) 0.9380 (3) 0.0286 (6)
H4A 0.5588 0.4062 1.0345 0.034*
H4B 0.5564 0.5104 0.9160 0.034*
C5 0.63188 (12) 0.4015 (3) 0.9123 (3) 0.0280 (6)
C6 0.65910 (13) 0.4560 (3) 0.7968 (3) 0.0361 (7)
H6 0.6359 0.5068 0.7327 0.043*
C7 0.71893 (14) 0.4394 (3) 0.7709 (4) 0.0410 (8)
H7 0.7364 0.4791 0.6902 0.049*
C8 0.75396 (13) 0.3648 (3) 0.8622 (3) 0.0359 (7)
C9 0.72698 (13) 0.3100 (3) 0.9785 (3) 0.0359 (7)
H9 0.7500 0.2585 1.0425 0.043*
C10 0.66696 (13) 0.3289 (3) 1.0031 (3) 0.0316 (7)
H10 0.6494 0.2909 1.0846 0.038*
C11 0.84333 (15) 0.4411 (4) 0.7441 (5) 0.0577 (11)
H11A 0.8243 0.4424 0.6552 0.087*
H11B 0.8840 0.4166 0.7328 0.087*
H11C 0.8410 0.5276 0.7854 0.087*
C12 0.85025 (15) 0.2829 (4) 0.9408 (4) 0.0569 (11)
H12A 0.8501 0.3374 1.0225 0.085*
H12B 0.8900 0.2737 0.9074 0.085*
H12C 0.8346 0.1970 0.9628 0.085*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.0410 (6) 0.0223 (5) 0.0347 (5) 0.000 0.0031 (4) 0.000
N1 0.0280 (12) 0.0207 (11) 0.0302 (12) −0.0008 (9) 0.0021 (10) −0.0010 (10)
N2 0.0300 (14) 0.0458 (17) 0.064 (2) −0.0016 (12) 0.0035 (13) −0.0117 (15)
C1 0.0210 (17) 0.0196 (18) 0.030 (2) 0.000 0.0053 (16) 0.000
C2 0.0399 (16) 0.0206 (14) 0.0356 (16) 0.0035 (12) −0.0043 (13) 0.0019 (12)
C3 0.0376 (15) 0.0191 (13) 0.0331 (16) 0.0013 (12) 0.0030 (13) 0.0035 (11)
C4 0.0303 (14) 0.0239 (14) 0.0315 (15) 0.0006 (11) 0.0013 (12) −0.0053 (12)
C5 0.0300 (15) 0.0251 (14) 0.0290 (15) −0.0003 (11) 0.0000 (11) −0.0032 (12)
C6 0.0331 (16) 0.0372 (17) 0.0379 (17) 0.0004 (13) 0.0013 (13) 0.0056 (14)
C7 0.0386 (17) 0.0415 (18) 0.0430 (19) −0.0055 (14) 0.0073 (14) 0.0058 (15)
C8 0.0299 (15) 0.0327 (16) 0.0450 (17) −0.0011 (12) 0.0007 (14) −0.0093 (14)
C9 0.0353 (16) 0.0350 (17) 0.0373 (17) 0.0069 (13) −0.0062 (13) −0.0036 (14)
C10 0.0348 (16) 0.0299 (15) 0.0300 (15) −0.0002 (12) 0.0000 (12) −0.0013 (13)
C11 0.0358 (18) 0.045 (2) 0.092 (3) −0.0136 (15) 0.0185 (19) −0.014 (2)
C12 0.0326 (17) 0.067 (3) 0.071 (3) 0.0097 (17) −0.0076 (18) −0.024 (2)

Geometric parameters (Å, °)

N1—C1 1.322 (3) C5—C6 1.386 (4)
N1—C2 1.472 (3) C5—C10 1.391 (4)
N1—C4 1.491 (3) C6—C7 1.389 (4)
N2—C8 1.402 (4) C6—H6 0.9600
N2—C12 1.456 (5) C7—C8 1.404 (5)
N2—C11 1.462 (5) C7—H7 0.9600
C1—N1i 1.322 (3) C8—C9 1.391 (4)
C1—H1 0.9600 C9—C10 1.394 (4)
C2—C3 1.501 (4) C9—H9 0.9600
C2—H2A 0.9600 C10—H10 0.9600
C2—H2B 0.9600 C11—H11A 0.9599
C3—C3i 1.517 (6) C11—H11B 0.9599
C3—H3A 0.9600 C11—H11C 0.9599
C3—H3B 0.9600 C12—H12A 0.9599
C4—C5 1.503 (4) C12—H12B 0.9599
C4—H4A 0.9600 C12—H12C 0.9599
C4—H4B 0.9600
C1—N1—C2 130.8 (3) C10—C5—C4 121.5 (3)
C1—N1—C4 116.8 (2) C5—C6—C7 122.1 (3)
C2—N1—C4 112.0 (2) C5—C6—H6 119.0
C8—N2—C12 118.2 (3) C7—C6—H6 119.0
C8—N2—C11 117.3 (3) C6—C7—C8 120.3 (3)
C12—N2—C11 116.5 (3) C6—C7—H7 119.9
N1i—C1—N1 132.6 (4) C8—C7—H7 119.9
N1i—C1—H1 113.7 C9—C8—N2 121.7 (3)
N1—C1—H1 113.7 C9—C8—C7 118.0 (3)
N1—C2—C3 116.3 (2) N2—C8—C7 120.3 (3)
N1—C2—H2A 108.2 C8—C9—C10 120.8 (3)
C3—C2—H2A 108.2 C8—C9—H9 119.6
N1—C2—H2B 108.2 C10—C9—H9 119.6
C3—C2—H2B 108.2 C5—C10—C9 121.5 (3)
H2A—C2—H2B 107.4 C5—C10—H10 119.2
C2—C3—C3i 112.8 (2) C9—C10—H10 119.2
C2—C3—H3A 109.0 N2—C11—H11A 109.5
C3i—C3—H3A 109.0 N2—C11—H11B 109.5
C2—C3—H3B 109.0 H11A—C11—H11B 109.5
C3i—C3—H3B 109.0 N2—C11—H11C 109.5
H3A—C3—H3B 107.8 H11A—C11—H11C 109.5
N1—C4—C5 111.8 (2) H11B—C11—H11C 109.5
N1—C4—H4A 109.3 N2—C12—H12A 109.5
C5—C4—H4A 109.3 N2—C12—H12B 109.5
N1—C4—H4B 109.3 H12A—C12—H12B 109.5
C5—C4—H4B 109.3 N2—C12—H12C 109.5
H4A—C4—H4B 107.9 H12A—C12—H12C 109.5
C6—C5—C10 117.4 (3) H12B—C12—H12C 109.5
C6—C5—C4 121.1 (3)
C2—N1—C1—N1i −0.7 (2) C12—N2—C8—C9 −10.0 (4)
C4—N1—C1—N1i 171.0 (2) C11—N2—C8—C9 −157.9 (3)
C1—N1—C2—C3 −18.0 (4) C12—N2—C8—C7 171.5 (3)
C4—N1—C2—C3 170.0 (2) C11—N2—C8—C7 23.6 (5)
N1—C2—C3—C3i 59.9 (4) C6—C7—C8—C9 −0.5 (5)
C1—N1—C4—C5 −109.3 (2) C6—C7—C8—N2 178.0 (3)
C2—N1—C4—C5 63.9 (3) N2—C8—C9—C10 −178.6 (3)
N1—C4—C5—C6 80.0 (3) C7—C8—C9—C10 −0.1 (5)
N1—C4—C5—C10 −100.1 (3) C6—C5—C10—C9 −0.8 (4)
C10—C5—C6—C7 0.2 (5) C4—C5—C10—C9 179.3 (3)
C4—C5—C6—C7 −179.9 (3) C8—C9—C10—C5 0.7 (5)
C5—C6—C7—C8 0.4 (5)

Symmetry codes: (i) −x+1, y, −z+3/2.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C1—H1···Cl1ii 0.96 2.53 3.486 (4) 180
C2—H2A···Cl1iii 0.96 2.82 3.688 (3) 151
C4—H4A···Cl1iii 0.96 2.81 3.682 (3) 152

Symmetry codes: (ii) −x+1, −y+1, −z+1; (iii) x, y, z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG2445).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & &Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Arduengo, A. J. & Krafczyk, R. (1998). Chem. Unserer. Z.32, 6–14.
  3. Arslan, H., VanDerveer, D., Özdemir, İ., Demir, S. & Çetinkaya, B. (2007a). Acta Cryst. E63, m770–m771.
  4. Arslan, H., VanDerveer, D., Yaşar, S., Özdemir, I. & Çetinkaya, B. (2007b). Acta Cryst. E63, m942–m944.
  5. Arslan, H., VanDerveer, D., Yaşar, S., Özdemir, İ. & Çetinkaya, B. (2007c). Acta Cryst. E63, m1001–m1003.
  6. Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc.97, 1354–1358.
  7. Dullius, J. E. L., Suarez, P. A. Z., Einloft, S., de Souza, R. F., Dupont, J., Fischer, J. & De Cian, A. (1998). Organometallics, 17, 815-819.
  8. Evans, D. G. & Boeyens, J. C. A. (1989). Acta Cryst. B45, 581–590.
  9. Glorius, F. (2007). Topics in Organometallic Chemistry, Vol. 21, N-Heterocyclic Carbenes inTransition Metal Catalysis Heidelberg: Springer.
  10. Hermann, W. A. (2002). Angew. Chem. Int. Ed.41, 1290–1309.
  11. Hermann, W. A. & Köcher, C. (1997). Angew. Chem. Int. Ed. Engl.36, 2162–2187.
  12. Jacobson, R. (1998). REQAB. Molecular Structure Corporation, The Woodlands, Texas,USA.
  13. Littke, A. F. & Fu, G. C. (2002). Angew. Chem. Int. Ed.41, 4176–4211. [DOI] [PubMed]
  14. Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst.39, 453–457.
  15. Nolan, S. P. (2006). N-HeterocyclicCarbenes in Synthesis Weinheim: Wiley.
  16. Özdemir, I., Gürbüz, N., Gök, Y., Çetinkaya, E. & Çetinkaya, B. (2005). Synlett, 15, 2394–2396.
  17. Regitz, M. (1996). Angew. Chem. Int. Ed. Engl.35, 725–728.
  18. Rigaku/MSC (2001). CrystalClear Rigaku/MSC, The Woodlands, Texas, USA.
  19. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  20. Yaşar, S., Özdemir, I., Çetinkaya, B., Renaud, J. & Bruneau, L. (2008). Eur. J. Org. Chem.12, 2142–2149.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808041603/hg2445sup1.cif

e-65-0o109-sup1.cif (17.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808041603/hg2445Isup2.hkl

e-65-0o109-Isup2.hkl (95.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES