Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Dec 13;65(Pt 1):o113. doi: 10.1107/S1600536808041172

4-Chloro-N-(pyrazin-2-yl)aniline

Wan Ainna Mardhiah Wan Saffiee a, Azila Idris a, Zaharah Aiyub a, Zanariah Abdullah a, Seik Weng Ng a,*
PMCID: PMC2968035  PMID: 21581575

Abstract

In the title compound, C10H8ClN3, the dihedral angle between the aromatic rings is 43.0 (1)° and the bridging C—N—C angle is 128.19 (16)°. The amino N atom of one mol­ecule forms a hydrogen bond to the 1-N atom of an adjacent pyrazinyl ring, generating an inversion dimer.

Related literature

For the two polymorphs of N-(pyrazin-2-yl)aniline, see: Wan Saffiee et al. (2008a ); Abdullah & Ng (2008). For N-(pyrazin-2-yl)-4-toluidine; see: Wan Saffiee et al. (2008b ).graphic file with name e-65-0o113-scheme1.jpg

Experimental

Crystal data

  • C10H8ClN3

  • M r = 205.64

  • Monoclinic, Inline graphic

  • a = 12.1257 (3) Å

  • b = 3.7944 (1) Å

  • c = 19.7242 (5) Å

  • β = 91.370 (2)°

  • V = 907.25 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.38 mm−1

  • T = 100 (2) K

  • 0.25 × 0.05 × 0.01 mm

Data collection

  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.912, T max = 0.996

  • 7922 measured reflections

  • 2073 independent reflections

  • 1633 reflections with I > 2σ(I)

  • R int = 0.033

Refinement

  • R[F 2 > 2σ(F 2)] = 0.037

  • wR(F 2) = 0.128

  • S = 1.14

  • 2073 reflections

  • 131 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.28 e Å−3

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2009).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808041172/tk2340sup1.cif

e-65-0o113-sup1.cif (14.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808041172/tk2340Isup2.hkl

e-65-0o113-Isup2.hkl (102KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯N2i 0.88 (1) 2.15 (1) 3.023 (2) 171 (2)

Symmetry code: (i) Inline graphic.

Acknowledgments

We thank the University of Malaya for supporting this study (FS205/2008 A).

supplementary crystallographic information

Experimental

2-Chloropyrazine (1.15 g, 10 mmol) and 4-chloroaniline (1.28 g, 10 mmol) were mixed with ethanol (2 ml) and the mixture heated at 423–433 K for 3 h. The product was dissolved in water and the solution extracted with ether. The ether phase was dried over sodium sulfate; the evaporation of the solvent gave well shaped crystals along with some unidentified brown material.

Refinement

Carbon-bound H-atoms were placed in calculated positions (C—H 0.95 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2Ueq(C).

The amino H-atom was located in a difference Fourier map, and was refined with a distance restraint of N–H 0.88±0.01 Å; its temperature factor was freely refined.

Figures

Fig. 1.

Fig. 1.

Thermal ellipsoid plot (Barbour, 2001) of hydrogen-bonded dimeric structure of C10H8ClN3 at the 70% probability level. Hydrogen atoms are drawn as spheres of arbitrary radius. Hydrogen bonds are shown as red dashed lines.

Crystal data

C10H8ClN3 F(000) = 424
Mr = 205.64 Dx = 1.506 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 2160 reflections
a = 12.1257 (3) Å θ = 2.6–28.1°
b = 3.7944 (1) Å µ = 0.38 mm1
c = 19.7242 (5) Å T = 100 K
β = 91.370 (2)° Plate, yellow
V = 907.25 (4) Å3 0.25 × 0.05 × 0.01 mm
Z = 4

Data collection

Bruker SMART APEX diffractometer 2073 independent reflections
Radiation source: fine-focus sealed tube 1633 reflections with I > 2σ(I)
graphite Rint = 0.033
ω scans θmax = 27.5°, θmin = 1.7°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) h = −15→15
Tmin = 0.912, Tmax = 0.996 k = −4→4
7922 measured reflections l = −25→24

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.128 H atoms treated by a mixture of independent and constrained refinement
S = 1.14 w = 1/[σ2(Fo2) + (0.0761P)2 + 0.0551P] where P = (Fo2 + 2Fc2)/3
2073 reflections (Δ/σ)max = 0.001
131 parameters Δρmax = 0.39 e Å3
1 restraint Δρmin = −0.28 e Å3

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1 1.04801 (4) −0.07942 (15) 0.36089 (3) 0.0269 (2)
N1 0.59098 (13) 0.2944 (5) 0.43167 (8) 0.0173 (4)
H1 0.5832 (19) 0.359 (6) 0.4742 (6) 0.019 (6)*
N2 0.40848 (13) 0.4535 (5) 0.42294 (8) 0.0152 (4)
N3 0.39085 (14) 0.1755 (5) 0.29204 (8) 0.0182 (4)
C1 0.69716 (16) 0.1986 (5) 0.41131 (10) 0.0147 (4)
C2 0.76584 (16) 0.0278 (5) 0.45861 (10) 0.0165 (4)
H2 0.7381 −0.0315 0.5018 0.020*
C3 0.87334 (16) −0.0565 (5) 0.44384 (10) 0.0181 (4)
H3 0.9196 −0.1710 0.4766 0.022*
C4 0.91273 (16) 0.0283 (5) 0.38059 (11) 0.0173 (4)
C5 0.84635 (16) 0.1980 (5) 0.33265 (10) 0.0176 (4)
H5 0.8745 0.2545 0.2894 0.021*
C6 0.73893 (16) 0.2849 (5) 0.34796 (10) 0.0155 (4)
H6 0.6935 0.4033 0.3154 0.019*
C7 0.49564 (16) 0.3053 (5) 0.39334 (9) 0.0141 (4)
C8 0.48498 (16) 0.1632 (5) 0.32725 (10) 0.0159 (4)
H8 0.5473 0.0556 0.3075 0.019*
C9 0.30456 (17) 0.3280 (6) 0.32195 (10) 0.0185 (4)
H9 0.2360 0.3451 0.2979 0.022*
C10 0.31373 (16) 0.4595 (5) 0.38676 (10) 0.0168 (4)
H10 0.2503 0.5588 0.4067 0.020*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.0139 (3) 0.0324 (3) 0.0346 (3) 0.0038 (2) 0.0035 (2) −0.0016 (2)
N1 0.0157 (8) 0.0266 (9) 0.0096 (8) 0.0025 (7) 0.0006 (6) −0.0028 (7)
N2 0.0154 (8) 0.0179 (8) 0.0124 (8) 0.0017 (6) 0.0004 (6) 0.0011 (6)
N3 0.0190 (9) 0.0222 (9) 0.0134 (8) −0.0051 (7) −0.0009 (6) 0.0010 (7)
C1 0.0134 (9) 0.0158 (9) 0.0148 (9) −0.0009 (7) −0.0007 (7) −0.0024 (7)
C2 0.0194 (10) 0.0181 (10) 0.0121 (9) −0.0008 (8) −0.0014 (7) 0.0000 (7)
C3 0.0180 (10) 0.0168 (10) 0.0192 (10) 0.0019 (8) −0.0039 (8) 0.0009 (8)
C4 0.0121 (9) 0.0178 (10) 0.0219 (10) −0.0001 (7) 0.0004 (7) −0.0040 (8)
C5 0.0177 (10) 0.0203 (10) 0.0148 (9) −0.0034 (8) 0.0028 (7) −0.0018 (8)
C6 0.0155 (9) 0.0166 (9) 0.0142 (9) −0.0008 (7) −0.0017 (7) 0.0005 (7)
C7 0.0143 (9) 0.0154 (9) 0.0125 (9) −0.0014 (7) 0.0003 (7) 0.0020 (7)
C8 0.0164 (10) 0.0186 (10) 0.0129 (9) −0.0012 (8) 0.0024 (7) −0.0008 (8)
C9 0.0154 (10) 0.0236 (10) 0.0163 (10) −0.0025 (8) −0.0018 (7) 0.0045 (8)
C10 0.0145 (9) 0.0192 (10) 0.0167 (10) 0.0008 (8) 0.0013 (7) 0.0026 (8)

Geometric parameters (Å, °)

Cl1—C4 1.743 (2) C3—C4 1.385 (3)
N1—C7 1.367 (2) C3—H3 0.9500
N1—C1 1.406 (2) C4—C5 1.386 (3)
N1—H1 0.881 (10) C5—C6 1.384 (3)
N2—C10 1.338 (2) C5—H5 0.9500
N2—C7 1.343 (2) C6—H6 0.9500
N3—C8 1.323 (3) C7—C8 1.414 (3)
N3—C9 1.344 (3) C8—H8 0.9500
C1—C2 1.395 (3) C9—C10 1.374 (3)
C1—C6 1.398 (3) C9—H9 0.9500
C2—C3 1.380 (3) C10—H10 0.9500
C2—H2 0.9500
C7—N1—C1 128.19 (16) C6—C5—H5 120.1
C7—N1—H1 114.2 (15) C4—C5—H5 120.1
C1—N1—H1 117.6 (15) C5—C6—C1 120.14 (18)
C10—N2—C7 116.74 (16) C5—C6—H6 119.9
C8—N3—C9 117.11 (17) C1—C6—H6 119.9
C2—C1—C6 118.89 (18) N2—C7—N1 115.87 (17)
C2—C1—N1 117.73 (17) N2—C7—C8 120.33 (17)
C6—C1—N1 123.26 (17) N1—C7—C8 123.78 (18)
C3—C2—C1 121.21 (18) N3—C8—C7 121.97 (18)
C3—C2—H2 119.4 N3—C8—H8 119.0
C1—C2—H2 119.4 C7—C8—H8 119.0
C2—C3—C4 118.96 (18) N3—C9—C10 121.19 (19)
C2—C3—H3 120.5 N3—C9—H9 119.4
C4—C3—H3 120.5 C10—C9—H9 119.4
C3—C4—C5 121.05 (18) N2—C10—C9 122.63 (18)
C3—C4—Cl1 119.53 (16) N2—C10—H10 118.7
C5—C4—Cl1 119.42 (16) C9—C10—H10 118.7
C6—C5—C4 119.75 (19)
C7—N1—C1—C2 −146.4 (2) N1—C1—C6—C5 176.58 (18)
C7—N1—C1—C6 37.6 (3) C10—N2—C7—N1 −178.56 (17)
C6—C1—C2—C3 −0.1 (3) C10—N2—C7—C8 −0.4 (3)
N1—C1—C2—C3 −176.21 (19) C1—N1—C7—N2 −171.00 (19)
C1—C2—C3—C4 −0.5 (3) C1—N1—C7—C8 10.9 (3)
C2—C3—C4—C5 0.6 (3) C9—N3—C8—C7 −0.4 (3)
C2—C3—C4—Cl1 −179.50 (16) N2—C7—C8—N3 1.2 (3)
C3—C4—C5—C6 0.0 (3) N1—C7—C8—N3 179.22 (19)
Cl1—C4—C5—C6 −179.91 (15) C8—N3—C9—C10 −1.1 (3)
C4—C5—C6—C1 −0.6 (3) C7—N2—C10—C9 −1.1 (3)
C2—C1—C6—C5 0.7 (3) N3—C9—C10—N2 1.9 (3)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1···N2i 0.88 (1) 2.15 (1) 3.023 (2) 171 (2)

Symmetry codes: (i) −x+1, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK2340).

References

  1. Abdullah, Z. & Ng, S. W. (2008). Acta Cryst. E64, o2106. [DOI] [PMC free article] [PubMed]
  2. Barbour, L. J. (2001). J. Supramol. Chem.1, 189–191.
  3. Bruker (2007). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  6. Wan Saffiee, W. A. M., Idris, A., Abdullah, Z., Aiyub, Z. & Ng, S. W. (2008a). Acta Cryst. E64, o2105. [DOI] [PMC free article] [PubMed]
  7. Wan Saffiee, W. A. M., Idris, A., Aiyub, Z., Abdullah, Z. & Ng, S. W. (2008b). Acta Cryst. E64, o2440. [DOI] [PMC free article] [PubMed]
  8. Westrip, S. P. (2009). publCIF In preparation.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808041172/tk2340sup1.cif

e-65-0o113-sup1.cif (14.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808041172/tk2340Isup2.hkl

e-65-0o113-Isup2.hkl (102KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES