Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Dec 13;65(Pt 1):o117. doi: 10.1107/S1600536808041494

N-[(E)-(5-Methyl­thio­phen-2-yl)methyl­idene]-1H-1,2,4-triazol-3-amine

Zahid H Chohan a, Muhammad Hanif a, M Nawaz Tahir b,*
PMCID: PMC2968039  PMID: 21581579

Abstract

In the title Schiff base, C8H8N4S, a condensation product of 5-methyl­thio­phene-2-carboxaldehyde and 3-amino-1,2,4-triazole, the dihedral angle between the triazolyl and thienyl rings is 6.44 (14)°. The compound exists as a polymeric chain arising from inter­molecular N—H⋯N bonding.

Related literature

For a related comound, see: Chohan et al. (2009). For the biological properties of such compounds, see: Foroumadi et al. (2003); Manfredini et al. (2000).graphic file with name e-65-0o117-scheme1.jpg

Experimental

Crystal data

  • C8H8N4S

  • M r = 192.24

  • Orthorhombic, Inline graphic

  • a = 7.2570 (7) Å

  • b = 8.9522 (8) Å

  • c = 14.2930 (15) Å

  • V = 928.56 (16) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.31 mm−1

  • T = 296 (2) K

  • 0.24 × 0.16 × 0.14 mm

Data collection

  • Bruker KAPPA APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005) T min = 0.928, T max = 0.956

  • 5793 measured reflections

  • 2206 independent reflections

  • 1859 reflections with I > 2σ(I)

  • R int = 0.034

Refinement

  • R[F 2 > 2σ(F 2)] = 0.034

  • wR(F 2) = 0.097

  • S = 1.05

  • 2206 reflections

  • 134 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.23 e Å−3

  • Absolute structure: Flack (1983), 854 Friedel pairs

  • Flack parameter: −0.02 (10)

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2003); software used to prepare material for publication: WinGX publication routines (Farrugia, 1999) and PLATON.

Supplementary Material

Crystal structure: contains datablocks text, I. DOI: 10.1107/S1600536808041494/ng2524sup1.cif

e-65-0o117-sup1.cif (16KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808041494/ng2524Isup2.hkl

e-65-0o117-Isup2.hkl (106.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3n⋯N1i 0.85 (3) 2.12 (3) 2.963 (2) 172 (2)

Symmetry code: (i) Inline graphic.

Acknowledgments

The authors acknowledge the Higher Education Commission, Islamabad, Pakistan, for funding the purchase of the diffractometer at GCU, Lahore.

supplementary crystallographic information

Comment

Compounds derived from triazole possess antimicrobial, analgesic, anti-inflammatory, local anesthetic, antineoplastic and antimalarial properties (Foroumadi et al., 2003). Some triazole Schiff bases also exhibited antiproliferative and anticancer activity (Manfredini et al., 2000). Due to their significant biological applications they have gained much attention in bioinorganic and metal-based drug discovery. In view of its structural and biological importance, we have synthesized (Chohan et al., 2009), series of triazole derived Schiff bases along with the title compound (I). We report herein, its preperation and crystal structure.

In the molecule of title compound, (Fig 1), the bond lengths and angles are within normal ranges. In this molecule 5-methylthiophen ring is attached to 5-membered ring of triazole moiety through the Schiff bond C=N. The dihedral angle between ring A(S1/C1—C4) and B(C7/N2/N3/C8/N4) is 6.44 (14)°. There exist intramolecular as well as an intermolecular H-bonds as given in Table 1. The molecules are connected to each other through intermolecular H-bonds of N–H···N type in a helical way (Fig 2).

Experimental

A mixture of 5-methylthiophene-2-carboxaldehyde (1.09 ml, 0.01 M) and 3-amino-1,2,4-triazole (0.84 g, 0.01 M) in 1:1 molar proportions in methanol (40 ml) was boiled under reflux for 5 h by monitoring through TLC. The reaction mixture was cooled at room temperature and filtered; within an hour a light brown solid product separated from the clear solution. It was filtered, washed with methanol, dried and recrystallized from a mixture of ethanol:methanol (1:1).

Refinement

H-atoms were positioned geometrically, with C—H = 0.96 Å for methyl carbon of thiophene ring and constrained to ride on the parent atom. The coordinates of all other H-atoms were refined. The Uiso(H) = xUeq(C, N), where x = 1.5 for methyl H and x = 1.2 for all other H atoms.

Figures

Fig. 1.

Fig. 1.

ORTEP-3 for Windows (Farrugia, 1997) drawing of the title compound, C8H8N4S, with the atom numbering scheme. The thermal ellipsoids are drawn at the 50% probability level. H-atoms are shown by small circles of arbitrary radii. The intramolecular H-bonding is shown by dashed lines.

Fig. 2.

Fig. 2.

The partial unit cell packing of (I) (Spek, 2003) showing the interamolecular and intermolecular hydrogen bonding showing that polymeric sheets are formed.

Crystal data

C8H8N4S F(000) = 400
Mr = 192.24 Dx = 1.375 Mg m3
Orthorhombic, P212121 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2ab Cell parameters from 2206 reflections
a = 7.2570 (7) Å θ = 2.7–28.3°
b = 8.9522 (8) Å µ = 0.31 mm1
c = 14.2930 (15) Å T = 296 K
V = 928.56 (16) Å3 Prismatic, light brown
Z = 4 0.24 × 0.16 × 0.14 mm

Data collection

Bruker KAPPA APEXII CCD diffractometer 2206 independent reflections
Radiation source: fine-focus sealed tube 1859 reflections with I > 2σ(I)
graphite Rint = 0.034
Detector resolution: 7.4 pixels mm-1 θmax = 28.3°, θmin = 2.7°
ω scans h = −9→9
Absorption correction: multi-scan (SADABS; Bruker, 2005) k = −11→11
Tmin = 0.928, Tmax = 0.956 l = −17→19
5793 measured reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.034 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.097 w = 1/[σ2(Fo2) + (0.0562P)2 + 0.0383P] where P = (Fo2 + 2Fc2)/3
S = 1.05 (Δ/σ)max < 0.001
2206 reflections Δρmax = 0.20 e Å3
134 parameters Δρmin = −0.22 e Å3
0 restraints Absolute structure: Flack (1983), 854 Friedel pairs
Primary atom site location: structure-invariant direct methods Flack parameter: −0.02 (10)

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.48892 (7) −0.18020 (5) 0.00175 (3) 0.0512 (2)
N1 0.5269 (2) 0.13362 (16) 0.09627 (10) 0.0456 (4)
N2 0.4898 (2) 0.29617 (16) 0.22417 (10) 0.0498 (5)
N3 0.5397 (2) 0.43946 (17) 0.23930 (11) 0.0502 (5)
N4 0.6332 (3) 0.39225 (19) 0.09806 (13) 0.0659 (7)
C1 0.5665 (3) −0.0136 (2) −0.04286 (12) 0.0460 (5)
C2 0.6222 (3) −0.0303 (3) −0.13344 (14) 0.0565 (7)
C3 0.6008 (3) −0.1767 (3) −0.16735 (14) 0.0562 (7)
C4 0.5306 (3) −0.2720 (2) −0.10199 (12) 0.0497 (5)
C5 0.4937 (4) −0.4350 (3) −0.11161 (16) 0.0737 (9)
C6 0.5724 (3) 0.1226 (2) 0.00957 (13) 0.0473 (5)
C7 0.5491 (3) 0.27297 (19) 0.13780 (12) 0.0432 (5)
C8 0.6228 (3) 0.4940 (3) 0.16478 (17) 0.0654 (8)
H2 0.663 (3) 0.048 (2) −0.1784 (19) 0.0678*
H3 0.629 (3) −0.210 (3) −0.2327 (18) 0.0675*
H3N 0.515 (3) 0.488 (3) 0.2891 (17) 0.0602*
H5A 0.52067 −0.48427 −0.05354 0.1103*
H5B 0.57023 −0.47560 −0.16015 0.1103*
H5C 0.36648 −0.45026 −0.12734 0.1103*
H6 0.621 (3) 0.209 (2) −0.0237 (15) 0.0567*
H8 0.671 (4) 0.595 (2) 0.1599 (17) 0.0785*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0642 (3) 0.0540 (3) 0.0354 (2) −0.0070 (2) 0.0078 (2) −0.0047 (2)
N1 0.0516 (8) 0.0465 (7) 0.0386 (7) 0.0015 (7) −0.0023 (7) −0.0011 (6)
N2 0.0668 (10) 0.0434 (7) 0.0392 (7) 0.0024 (7) 0.0000 (8) 0.0002 (5)
N3 0.0644 (10) 0.0439 (8) 0.0422 (8) 0.0024 (7) −0.0020 (8) −0.0053 (6)
N4 0.0895 (14) 0.0554 (10) 0.0529 (10) −0.0181 (9) 0.0184 (10) −0.0072 (8)
C1 0.0475 (9) 0.0518 (10) 0.0388 (8) −0.0018 (7) 0.0027 (8) −0.0017 (7)
C2 0.0641 (13) 0.0637 (13) 0.0418 (10) −0.0064 (9) 0.0110 (9) 0.0012 (9)
C3 0.0605 (12) 0.0706 (13) 0.0376 (9) 0.0014 (10) 0.0098 (9) −0.0096 (9)
C4 0.0515 (10) 0.0573 (10) 0.0404 (8) −0.0008 (8) 0.0011 (8) −0.0092 (7)
C5 0.100 (2) 0.0629 (12) 0.0582 (12) −0.0099 (13) 0.0055 (13) −0.0160 (10)
C6 0.0521 (9) 0.0499 (9) 0.0398 (8) −0.0004 (8) −0.0003 (8) 0.0008 (7)
C7 0.0475 (9) 0.0431 (8) 0.0391 (8) 0.0031 (7) −0.0022 (8) 0.0003 (7)
C8 0.0827 (16) 0.0504 (11) 0.0630 (13) −0.0152 (11) 0.0126 (12) −0.0079 (10)

Geometric parameters (Å, °)

S1—C1 1.7169 (19) C1—C6 1.432 (3)
S1—C4 1.7220 (18) C2—C3 1.406 (4)
N1—C6 1.286 (2) C3—C4 1.364 (3)
N1—C7 1.391 (2) C4—C5 1.490 (3)
N2—N3 1.350 (2) C2—H2 1.00 (2)
N2—C7 1.324 (2) C3—H3 1.00 (3)
N3—C8 1.318 (3) C5—H5A 0.9600
N4—C7 1.355 (3) C5—H5B 0.9600
N4—C8 1.321 (3) C5—H5C 0.9600
N3—H3N 0.85 (3) C6—H6 0.974 (19)
C1—C2 1.365 (3) C8—H8 0.97 (2)
S1···N1 3.1295 (15) N4···H5Avii 2.5700
S1···C4i 3.647 (2) N4···H6 2.39 (2)
N1···S1 3.1295 (15) C1···N4v 3.419 (3)
N1···N3ii 2.963 (2) C4···S1viii 3.647 (2)
N2···N4 2.252 (2) C8···N2iii 3.241 (3)
N2···C8ii 3.241 (3) C7···H3vi 3.03 (2)
N2···N3ii 3.243 (2) C7···H3Nii 2.80 (3)
N3···N1iii 2.963 (2) H2···N2iv 2.83 (2)
N3···N4 2.171 (2) H2···N3iv 2.87 (2)
N3···N2iii 3.243 (2) H3···N2ix 2.94 (2)
N4···C1iv 3.419 (3) H3···C7ix 3.03 (2)
N4···N3 2.171 (2) H3N···N1iii 2.12 (3)
N1···H3Nii 2.12 (3) H3N···N2iii 2.77 (3)
N2···H8ii 2.71 (2) H3N···C7iii 2.80 (3)
N2···H2v 2.83 (2) H5A···N4x 2.5700
N2···H3vi 2.94 (2) H6···N4 2.39 (2)
N2···H3Nii 2.77 (3) H8···N2iii 2.71 (2)
N3···H2v 2.87 (2)
C1—S1—C4 92.13 (9) N1—C7—N4 125.46 (16)
C6—N1—C7 116.76 (15) N2—C7—N4 114.44 (16)
N3—N2—C7 102.19 (14) N3—C8—N4 110.7 (2)
N2—N3—C8 110.20 (17) C1—C2—H2 128.6 (14)
C7—N4—C8 102.42 (18) C3—C2—H2 117.8 (14)
C8—N3—H3N 125.6 (17) C2—C3—H3 125.2 (15)
N2—N3—H3N 124.1 (17) C4—C3—H3 121.9 (15)
S1—C1—C6 123.72 (14) C4—C5—H5A 109.00
C2—C1—C6 125.52 (19) C4—C5—H5B 109.00
S1—C1—C2 110.75 (16) C4—C5—H5C 110.00
C1—C2—C3 113.4 (2) H5A—C5—H5B 109.00
C2—C3—C4 112.85 (18) H5A—C5—H5C 109.00
S1—C4—C3 110.91 (15) H5B—C5—H5C 109.00
C3—C4—C5 128.07 (19) N1—C6—H6 120.2 (12)
S1—C4—C5 121.02 (15) C1—C6—H6 115.6 (12)
N1—C6—C1 124.19 (17) N3—C8—H8 124.6 (15)
N1—C7—N2 120.07 (16) N4—C8—H8 124.7 (15)
C1—S1—C4—C3 −0.12 (18) C8—N4—C7—N2 −0.4 (3)
C4—S1—C1—C2 −0.28 (18) C7—N4—C8—N3 0.4 (2)
C4—S1—C1—C6 −179.69 (19) C8—N4—C7—N1 −178.6 (2)
C1—S1—C4—C5 178.8 (2) C2—C1—C6—N1 −176.6 (2)
C6—N1—C7—N4 −7.9 (3) S1—C1—C2—C3 0.6 (2)
C7—N1—C6—C1 177.03 (19) C6—C1—C2—C3 −180.0 (2)
C6—N1—C7—N2 173.91 (18) S1—C1—C6—N1 2.7 (3)
C7—N2—N3—C8 0.1 (2) C1—C2—C3—C4 −0.7 (3)
N3—N2—C7—N1 178.54 (17) C2—C3—C4—S1 0.5 (2)
N3—N2—C7—N4 0.2 (2) C2—C3—C4—C5 −178.4 (2)
N2—N3—C8—N4 −0.3 (2)

Symmetry codes: (i) x−1/2, −y−1/2, −z; (ii) −x+1, y−1/2, −z+1/2; (iii) −x+1, y+1/2, −z+1/2; (iv) x+1/2, −y+1/2, −z; (v) x−1/2, −y+1/2, −z; (vi) −x+3/2, −y, z+1/2; (vii) x, y+1, z; (viii) x+1/2, −y−1/2, −z; (ix) −x+3/2, −y, z−1/2; (x) x, y−1, z.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N3—H3n···N1iii 0.85 (3) 2.12 (3) 2.963 (2) 172 (2)
C6—H6···N4 0.974 (19) 2.39 (2) 2.761 (3) 101.7 (15)

Symmetry codes: (iii) −x+1, y+1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG2524).

References

  1. Bruker (2005). SADABS Bruker AXS Inc. Madison, Wisconsin, USA.
  2. Bruker (2007). APEX2 and SAINT Bruker AXS Inc. Madison, Wisconsin, USA.
  3. Chohan, Z. H., Hanif, M. & Tahir, M. N. (2009). Acta Cryst. E65, o58. [DOI] [PMC free article] [PubMed]
  4. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  5. Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  6. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  7. Foroumadi, A., Mansouri, S., Kaini, Z. & Rahmani, A. (2003). Eur. J. Med. Chem.38, 851–854. [DOI] [PubMed]
  8. Manfredini, S., Vicentini, C. B., Manfrini, M., Bianchi, N., Rutigliano, C., Mischiati, C. & Gambari, R. (2000). Bioorg. Med. Chem.8, 2343–2346. [DOI] [PubMed]
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  10. Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks text, I. DOI: 10.1107/S1600536808041494/ng2524sup1.cif

e-65-0o117-sup1.cif (16KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808041494/ng2524Isup2.hkl

e-65-0o117-Isup2.hkl (106.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES