Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Dec 13;65(Pt 1):o120. doi: 10.1107/S1600536808041780

(E)-1-(4-Bromo­phen­yl)-3-(3,4,5-trimethoxy­phen­yl)prop-2-en-1-one1

Thitipone Suwunwong a, Suchada Chantrapromma a,*, Hoong-Kun Fun b,
PMCID: PMC2968041  PMID: 21581582

Abstract

In the title compound, C18H17BrO4, the dihedral angle between the 4-bromo­phenyl and 3,4,5-trimethoxy­phenyl rings is 44.18 (6)°. In the crystal structure, the mol­ecules are linked by C—H⋯O and C—H⋯π inter­actions.

Related literature

For background and applications to chalcones, see: Jung et al. (2008); Patil et al. (2007); Patil & Dharmaprakash (2008); Prasad et al. (2008); Schlogl & Egger (1963). For related structures, see: Ng et al. (2006); Patil et al. (2006; 2007). For on hydrogen-bond motifs, see: Bernstein et al. (1995). For bond-length data, see: Allen et al. (1987).graphic file with name e-65-0o120-scheme1.jpg

Experimental

Crystal data

  • C18H17BrO4

  • M r = 377.22

  • Tetragonal, Inline graphic

  • a = 26.6517 (3) Å

  • c = 4.4238 (1) Å

  • V = 3142.28 (9) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 2.63 mm−1

  • T = 100.0 (1) K

  • 0.55 × 0.12 × 0.12 mm

Data collection

  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005) T min = 0.320, T max = 0.726

  • 142737 measured reflections

  • 9693 independent reflections

  • 6638 reflections with I > 2σ(I)

  • R int = 0.062

Refinement

  • R[F 2 > 2σ(F 2)] = 0.033

  • wR(F 2) = 0.097

  • S = 1.07

  • 9693 reflections

  • 211 parameters

  • H-atom parameters constrained

  • Δρmax = 0.71 e Å−3

  • Δρmin = −0.56 e Å−3

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808041780/pk2134sup1.cif

e-65-0o120-sup1.cif (20KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808041780/pk2134Isup2.hkl

e-65-0o120-Isup2.hkl (474.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C11—H11A⋯O1i 0.93 2.52 3.4391 (16) 170
C17—H17C⋯O3ii 0.96 2.52 3.2789 (16) 136
C16—H16BCg1iii 0.96 2.97 3.8080 (14) 147

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic. Cg1 is the centroid of the C10–C15 ring.

Acknowledgments

The authors thank the Thailand Research Fund (TRF) and Prince of Songkla University for financial support and also thank Universiti Sains Malaysia for the Research University Golden Goose grant No. 1001/PFIZIK/811012.

supplementary crystallographic information

Comment

Chalcones are compounds in a family of aromatic ketones with two aromatic groups bridged by an enone linkage (Ar-COCH=CH—Ar) (Schlogl & Egger, 1963). They have a wide range of applications covering non-linear optical (NLO) (Patil & Dharmaprakash, 2008) and electro-active fluorescent materials (Jung et al., 2008) to materials with various biological activities. As an example, 1-(4-hydroxyphenyl)-3-(3,4,5-trimethoxyphenyl)-propenone was found to be able to inhibit growth of some bacteria (Prasad et al., 2008). These interesting properties of chalcones led us to synthesize the title compound so as to study for its antibacterial and cytotoxic activities.

The molecule of the title chalcone derivative (Fig. 1) exists in an E configuration with respect to the C8═C9 double bond [1.3428 (17) Å] with torsion angle C7–C8–C9–C10 = -173.04 (12)°. The whole molecule is not planar as the interplanar angle between 4-bromophenyl and 3,4,5-trimethoxyphenyl rings is 44.18 (6)°. The propenone unit (C7—C9/O1) is nearly planar with the torsion angle O1–C7–C8–C9 = 3.4 (2)°. Atoms O1, C6, C7, C8 and C9 lie on the same plane with the most deviation of -0.018 (1) Å for atom C8. The mean plane through O1/C6/C7/C8/C9 makes interplanar angles of 30.82 (7)° and 13.37 (7)° with the planes of 4-bromophenyl and 3,4,5-trimethoxyphenyl rings, respectively. The three methoxy groups of 3,4,5-trimethoxyphenyl unit have three difference orientations: one methoxy group (at atom C14 position) is co-planar with the attached benzene ring with torsion angle C18–O4–C14–C15 = 0.71 (17)° whereas the one at atom C12 position is twisted with the torsion angle C16–O2–C12–C11 = 10.38 (16)° and one is (+)-syn-clinally attached at atom C13 with the torsion angle C17–O3–C13—C14 = 74.48 (14)°. The bond distances are of normal values (Allen et al., 1987) and are comparable with the closely related structures (Ng et al., 2006; Patil et al., 2006; 2007).

In the crystal packing (Fig. 2), the molecules are linked by weak C11—H11A···O1 intermolcular interactions (Table 1) into cyclic centrosymmetric R22(14) dimers (Bernstein et al., 1995). These dimers are stacked along the c axis (Fig. 2) and molecules within the stacks are interlinked by weak C17—H17C···O3 intermolecular interactions. The crystal is stabilized by weak C—H···O interactions (Table 1) and a C—H···π interaction (C16—H16B···Cg1 = 3.8080 (14) Å), where Cg1 is the centroid of the C10–C15 ring.

Experimental

The title compound was synthesized by the condensation of 3,4,5-trimethoxybenzaldehyde (0.4 g, 2 mmol) with 4-bromoacetophenone (0.4 g, 2 mmol) in ethanol (50 ml) in the presence of 30% NaOH(aq) (10 ml). After stirring for 4 h, the resulting pale yellow solid appeared and was then collected by filtration, washed with distilled water, dried and purified by repeated recrystallization from acetone. Colorless block-shaped single crystals of the title compound suitable for x-ray structure determination were recrystalized from acetone/methanol (1:1 v/v) by the slow evaporation of the solvent at room temperature over several days, Mp. 403–404 K.

Refinement

All H atoms were placed in calculated positions, with C—H = 0.93 Å, Uiso = 1.2Ueq(C) for aromatic and CH and C—H = 0.96 Å, Uiso = 1.5Ueq(C) for CH3 atoms. A rotating group model was used for the methyl groups. The highest residual electron density peak is located at 0.64 Å from C12 and the deepest hole is located at 0.24 Å from Br1.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atom-numbering scheme.

Fig. 2.

Fig. 2.

The crystal packing of the title compound, showing dimers stacked along the c axis. Hydrogen bonds are shown as dashed lines.

Crystal data

C18H17BrO4 Dx = 1.595 Mg m3
Mr = 377.22 Melting point = 403–404 K
Tetragonal, P42/n Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 4bc Cell parameters from 9693 reflections
a = 26.6517 (3) Å θ = 1.1–40.0°
c = 4.4238 (1) Å µ = 2.63 mm1
V = 3142.28 (9) Å3 T = 100 K
Z = 8 Block, colorless
F(000) = 1536 0.55 × 0.12 × 0.12 mm

Data collection

Bruker SMART APEXII CCD area-detector diffractometer 9693 independent reflections
Radiation source: fine-focus sealed tube 6638 reflections with I > 2σ(I)
graphite Rint = 0.062
Detector resolution: 8.33 pixels mm-1 θmax = 40.0°, θmin = 1.1°
ω scans h = −41→48
Absorption correction: multi-scan (SADABS; Bruker, 2005) k = −48→44
Tmin = 0.320, Tmax = 0.726 l = −7→7
142737 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.097 H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0455P)2 + 0.774P] where P = (Fo2 + 2Fc2)/3
9693 reflections (Δ/σ)max = 0.003
211 parameters Δρmax = 0.71 e Å3
0 restraints Δρmin = −0.56 e Å3

Special details

Experimental. The low-temperature data was collected with the Oxford Cryosystem Cobra low-temperature attachment.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. Data up to 2theta = 80 degrees is used in the final refinement

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Br1 0.332148 (4) 0.255150 (5) −0.02867 (3) 0.01727 (4)
O1 0.44846 (4) 0.45051 (4) 0.6855 (3) 0.02383 (19)
O2 0.71139 (3) 0.49941 (3) 1.1449 (2) 0.01727 (16)
O3 0.76246 (3) 0.42445 (3) 0.88670 (19) 0.01535 (15)
O4 0.71518 (3) 0.34984 (3) 0.5922 (2) 0.01822 (16)
C1 0.44558 (5) 0.32060 (5) 0.4779 (3) 0.0174 (2)
H1A 0.4729 0.3097 0.5908 0.021*
C2 0.41434 (4) 0.28571 (4) 0.3389 (3) 0.0167 (2)
H2A 0.4201 0.2515 0.3625 0.020*
C3 0.37450 (4) 0.30249 (4) 0.1647 (3) 0.01471 (19)
C4 0.36484 (4) 0.35344 (4) 0.1273 (3) 0.01654 (19)
H4A 0.3383 0.3642 0.0071 0.020*
C5 0.39549 (4) 0.38788 (4) 0.2725 (3) 0.01630 (19)
H5A 0.3890 0.4220 0.2523 0.020*
C6 0.43604 (4) 0.37201 (5) 0.4488 (3) 0.01541 (19)
C7 0.46729 (4) 0.41065 (5) 0.6074 (3) 0.0169 (2)
C8 0.52093 (4) 0.39895 (5) 0.6544 (3) 0.0179 (2)
H8A 0.5337 0.3689 0.5811 0.022*
C9 0.55163 (4) 0.43071 (5) 0.8004 (3) 0.0167 (2)
H9A 0.5369 0.4586 0.8901 0.020*
C10 0.60602 (4) 0.42570 (4) 0.8320 (3) 0.01485 (19)
C11 0.63128 (4) 0.46298 (4) 0.9952 (3) 0.01516 (19)
H11A 0.6132 0.4878 1.0950 0.018*
C12 0.68354 (4) 0.46278 (4) 1.0079 (2) 0.01394 (18)
C13 0.71100 (4) 0.42475 (4) 0.8662 (3) 0.01360 (18)
C14 0.68527 (4) 0.38623 (4) 0.7139 (3) 0.01435 (18)
C15 0.63325 (4) 0.38689 (4) 0.6936 (3) 0.01565 (19)
H15A 0.6165 0.3617 0.5887 0.019*
C16 0.68428 (5) 0.53482 (5) 1.3242 (3) 0.0180 (2)
H16A 0.7073 0.5587 1.4098 0.027*
H16B 0.6670 0.5175 1.4837 0.027*
H16C 0.6604 0.5521 1.1996 0.027*
C17 0.78718 (5) 0.43783 (5) 0.6083 (3) 0.0191 (2)
H17A 0.8228 0.4337 0.6311 0.029*
H17B 0.7799 0.4722 0.5601 0.029*
H17C 0.7754 0.4165 0.4485 0.029*
C18 0.69070 (5) 0.31032 (5) 0.4311 (3) 0.0198 (2)
H18A 0.7153 0.2866 0.3617 0.030*
H18B 0.6731 0.3241 0.2608 0.030*
H18C 0.6673 0.2938 0.5625 0.030*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Br1 0.01487 (6) 0.01441 (6) 0.02252 (6) −0.00131 (4) −0.00146 (4) −0.00109 (4)
O1 0.0156 (4) 0.0196 (4) 0.0364 (5) 0.0027 (3) −0.0021 (4) −0.0084 (4)
O2 0.0142 (4) 0.0161 (4) 0.0215 (4) −0.0018 (3) −0.0011 (3) −0.0040 (3)
O3 0.0099 (3) 0.0223 (4) 0.0138 (3) 0.0010 (3) −0.0009 (3) 0.0006 (3)
O4 0.0127 (4) 0.0169 (4) 0.0250 (4) 0.0019 (3) −0.0016 (3) −0.0061 (3)
C1 0.0148 (5) 0.0171 (5) 0.0204 (5) 0.0026 (4) −0.0025 (4) −0.0007 (4)
C2 0.0168 (5) 0.0140 (5) 0.0193 (5) 0.0026 (4) −0.0012 (4) 0.0000 (4)
C3 0.0123 (4) 0.0145 (5) 0.0174 (5) −0.0013 (3) 0.0011 (4) −0.0005 (4)
C4 0.0132 (5) 0.0153 (5) 0.0211 (5) 0.0012 (4) −0.0019 (4) 0.0017 (4)
C5 0.0131 (5) 0.0137 (5) 0.0221 (5) 0.0012 (4) −0.0009 (4) 0.0008 (4)
C6 0.0115 (4) 0.0165 (5) 0.0182 (5) 0.0005 (4) 0.0003 (4) −0.0012 (4)
C7 0.0120 (5) 0.0179 (5) 0.0209 (5) 0.0003 (4) −0.0006 (4) −0.0018 (4)
C8 0.0121 (5) 0.0186 (5) 0.0231 (5) 0.0014 (4) −0.0007 (4) −0.0040 (4)
C9 0.0122 (5) 0.0158 (5) 0.0220 (5) 0.0004 (4) 0.0002 (4) −0.0014 (4)
C10 0.0115 (4) 0.0145 (5) 0.0185 (5) −0.0001 (3) −0.0003 (3) 0.0001 (4)
C11 0.0124 (4) 0.0141 (5) 0.0190 (5) −0.0002 (3) 0.0000 (4) 0.0001 (4)
C12 0.0130 (4) 0.0133 (4) 0.0156 (4) −0.0011 (3) −0.0005 (3) 0.0007 (3)
C13 0.0110 (4) 0.0156 (5) 0.0143 (4) 0.0000 (3) −0.0008 (3) 0.0007 (3)
C14 0.0130 (4) 0.0137 (4) 0.0163 (4) 0.0014 (3) −0.0008 (3) −0.0003 (4)
C15 0.0131 (5) 0.0147 (5) 0.0191 (5) 0.0000 (4) −0.0013 (4) −0.0015 (4)
C16 0.0196 (5) 0.0159 (5) 0.0186 (5) 0.0003 (4) −0.0014 (4) −0.0019 (4)
C17 0.0148 (5) 0.0258 (6) 0.0168 (5) −0.0009 (4) 0.0009 (4) 0.0024 (4)
C18 0.0170 (5) 0.0165 (5) 0.0259 (6) 0.0002 (4) −0.0004 (4) −0.0051 (4)

Geometric parameters (Å, °)

Br1—C3 1.8967 (11) C8—H8A 0.9300
O1—C7 1.2247 (15) C9—C10 1.4624 (16)
O2—C12 1.3678 (14) C9—H9A 0.9300
O2—C16 1.4292 (15) C10—C11 1.4007 (16)
O3—C13 1.3746 (13) C10—C15 1.4039 (16)
O3—C17 1.4413 (15) C11—C12 1.3941 (16)
O4—C14 1.3658 (14) C11—H11A 0.9300
O4—C18 1.4294 (15) C12—C13 1.3984 (16)
C1—C2 1.3916 (17) C13—C14 1.4065 (16)
C1—C6 1.3997 (17) C14—C15 1.3894 (16)
C1—H1A 0.9300 C15—H15A 0.9300
C2—C3 1.3862 (16) C16—H16A 0.9600
C2—H2A 0.9300 C16—H16B 0.9600
C3—C4 1.3917 (16) C16—H16C 0.9600
C4—C5 1.3866 (17) C17—H17A 0.9600
C4—H4A 0.9300 C17—H17B 0.9600
C5—C6 1.3981 (16) C17—H17C 0.9600
C5—H5A 0.9300 C18—H18A 0.9600
C6—C7 1.4990 (17) C18—H18B 0.9600
C7—C8 1.4777 (16) C18—H18C 0.9600
C8—C9 1.3428 (17)
C12—O2—C16 116.30 (9) C12—C11—C10 119.88 (11)
C13—O3—C17 113.47 (9) C12—C11—H11A 120.1
C14—O4—C18 116.97 (9) C10—C11—H11A 120.1
C2—C1—C6 120.31 (11) O2—C12—C11 123.86 (11)
C2—C1—H1A 119.8 O2—C12—C13 115.59 (10)
C6—C1—H1A 119.8 C11—C12—C13 120.51 (10)
C3—C2—C1 119.24 (11) O3—C13—C12 119.79 (10)
C3—C2—H2A 120.4 O3—C13—C14 120.92 (10)
C1—C2—H2A 120.4 C12—C13—C14 119.25 (10)
C2—C3—C4 121.50 (11) O4—C14—C15 124.47 (10)
C2—C3—Br1 119.46 (9) O4—C14—C13 115.00 (10)
C4—C3—Br1 119.04 (9) C15—C14—C13 120.54 (10)
C5—C4—C3 118.81 (11) C14—C15—C10 119.81 (11)
C5—C4—H4A 120.6 C14—C15—H15A 120.1
C3—C4—H4A 120.6 C10—C15—H15A 120.1
C4—C5—C6 120.89 (11) O2—C16—H16A 109.5
C4—C5—H5A 119.6 O2—C16—H16B 109.5
C6—C5—H5A 119.6 H16A—C16—H16B 109.5
C5—C6—C1 119.21 (11) O2—C16—H16C 109.5
C5—C6—C7 118.87 (11) H16A—C16—H16C 109.5
C1—C6—C7 121.89 (11) H16B—C16—H16C 109.5
O1—C7—C8 122.66 (11) O3—C17—H17A 109.5
O1—C7—C6 120.02 (11) O3—C17—H17B 109.5
C8—C7—C6 117.29 (10) H17A—C17—H17B 109.5
C9—C8—C7 121.62 (11) O3—C17—H17C 109.5
C9—C8—H8A 119.2 H17A—C17—H17C 109.5
C7—C8—H8A 119.2 H17B—C17—H17C 109.5
C8—C9—C10 126.33 (11) O4—C18—H18A 109.5
C8—C9—H9A 116.8 O4—C18—H18B 109.5
C10—C9—H9A 116.8 H18A—C18—H18B 109.5
C11—C10—C15 119.93 (10) O4—C18—H18C 109.5
C11—C10—C9 117.44 (10) H18A—C18—H18C 109.5
C15—C10—C9 122.55 (10) H18B—C18—H18C 109.5
C6—C1—C2—C3 1.71 (18) C16—O2—C12—C11 10.38 (16)
C1—C2—C3—C4 −0.42 (18) C16—O2—C12—C13 −171.99 (10)
C1—C2—C3—Br1 179.40 (9) C10—C11—C12—O2 175.59 (11)
C2—C3—C4—C5 −1.05 (18) C10—C11—C12—C13 −1.93 (17)
Br1—C3—C4—C5 179.12 (9) C17—O3—C13—C12 −107.90 (12)
C3—C4—C5—C6 1.25 (18) C17—O3—C13—C14 74.48 (14)
C4—C5—C6—C1 0.01 (18) O2—C12—C13—O3 3.79 (15)
C4—C5—C6—C7 −178.49 (11) C11—C12—C13—O3 −178.50 (10)
C2—C1—C6—C5 −1.51 (18) O2—C12—C13—C14 −178.55 (10)
C2—C1—C6—C7 176.94 (11) C11—C12—C13—C14 −0.84 (17)
C5—C6—C7—O1 28.97 (18) C18—O4—C14—C15 0.71 (17)
C1—C6—C7—O1 −149.50 (13) C18—O4—C14—C13 −179.04 (11)
C5—C6—C7—C8 −149.21 (12) O3—C13—C14—O4 −0.08 (16)
C1—C6—C7—C8 32.33 (17) C12—C13—C14—O4 −177.72 (10)
O1—C7—C8—C9 3.4 (2) O3—C13—C14—C15 −179.84 (10)
C6—C7—C8—C9 −178.44 (12) C12—C13—C14—C15 2.53 (17)
C7—C8—C9—C10 −173.04 (12) O4—C14—C15—C10 178.83 (11)
C8—C9—C10—C11 −179.68 (12) C13—C14—C15—C10 −1.43 (18)
C8—C9—C10—C15 3.6 (2) C11—C10—C15—C14 −1.35 (18)
C15—C10—C11—C12 3.03 (17) C9—C10—C15—C14 175.30 (11)
C9—C10—C11—C12 −173.80 (11)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C11—H11A···O1i 0.93 2.52 3.4391 (16) 170
C17—H17C···O3ii 0.96 2.52 3.2789 (16) 136
C16—H16B···Cg1iii 0.96 2.97 3.8080 (14) 147

Symmetry codes: (i) −x+1, −y+1, −z+2; (ii) x, y, z−1; (iii) x, y, z+1.

Footnotes

1

This paper is dedicated to the late Her Royal Highness Princess Galyani Vadhana Krom Luang Naradhiwas Rajanagarindra for her patronage of Science in Thailand.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PK2134).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.
  2. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  3. Bruker (2005). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Jung, Y. J., Son, K. I., Oh, Y. E. & Noh, D. Y. (2008). Polyhedron, 27, 861–867.
  5. Ng, S.-L., Shettigar, V., Razak, I. A., Fun, H.-K., Patil, P. S. & Dharmaprakash, S. M. (2006). Acta Cryst. E62, o1570–o1572.
  6. Patil, P. S., Chantrapromma, S., Fun, H.-K., Dharmaprakash, S. M. & Babu, H. B. R. (2007). Acta Cryst. E63, o2612.
  7. Patil, P. S. & Dharmaprakash, S. M. (2008). Mater. Lett 62, 451–453.
  8. Patil, P. S., Rosli, M. M., Fun, H.-K., Razak, I. A., Puranik, V. G. & Dharmaprakash, S. M. (2006). Acta Cryst. E62, o4798–o4799.
  9. Prasad, Y. R., Kumar, P. R., Smile, D. J. & Babu, P. A. (2008). ARKIVOC, 11, 266–276.
  10. Schlogl, K. & Egger, H. (1963). Monatsh. Chem.94, 376–392.
  11. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  12. Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808041780/pk2134sup1.cif

e-65-0o120-sup1.cif (20KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808041780/pk2134Isup2.hkl

e-65-0o120-Isup2.hkl (474.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES