Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Dec 13;65(Pt 1):o124. doi: 10.1107/S1600536808040531

6-Methyl­pyridin-3-amine

Kai Zhu a, Ning Xun a, Ping Wei a, Ping-Fang Han a,*
PMCID: PMC2968044  PMID: 21581585

Abstract

In the mol­ecule of the title compound, C6H8N2, the methyl C and amine N atoms are 0.021 (2) and 0.058 (2) Å from the pyridine ring plane. In the crystal structure, inter­molecular N—H⋯N hydrogen bonds link the mol­ecules.

Related literature

For a related structure, see: Sawanishi et al. (1987). For bond-length data, see: Allen et al. (1987).graphic file with name e-65-0o124-scheme1.jpg

Experimental

Crystal data

  • C6H8N2

  • M r = 108.14

  • Monoclinic, Inline graphic

  • a = 8.4240 (17) Å

  • b = 7.0560 (14) Å

  • c = 10.658 (2) Å

  • β = 105.23 (3)°

  • V = 611.3 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 294 (2) K

  • 0.30 × 0.20 × 0.10 mm

Data collection

  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968) T min = 0.978, T max = 0.993

  • 1183 measured reflections

  • 1106 independent reflections

  • 746 reflections with I > 2σ(I)

  • R int = 0.059

  • 3 standard reflections frequency: 120 min intensity decay: 1%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.057

  • wR(F 2) = 0.154

  • S = 1.02

  • 1106 reflections

  • 73 parameters

  • H-atom parameters constrained

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.19 e Å−3

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808040531/hk2583sup1.cif

e-65-0o124-sup1.cif (13.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808040531/hk2583Isup2.hkl

e-65-0o124-Isup2.hkl (54.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2B⋯N1i 0.86 2.29 3.131 (3) 165

Symmetry code: (i) Inline graphic.

Acknowledgments

The authors thank the Center of Testing and Analysis, Nanjing University, for support.

supplementary crystallographic information

Comment

Some derivatives of 3-pyridinecarboxylic acid are important chemical materials. We report herein the crystal structure of the title compound.

In the molecule of the title compound (Fig. 1) the bond lengths (Allen et al., 1987) and angles are within normal ranges. Atoms C1 and N2 are 0.021 (2) Å and 0.058 (2) Å away from the pyridine ring plane.

In the crystal structure, intermolecular N-H···N hydrogen bonds (Table 1) link the molecules, in which they may be effective in the stabilization of the structure.

Experimental

For the preparation of the title compound, bromine (17.3 g) was added slowly to sodium hydroxide solution (303 ml, 5%), and then 3-pyridinecarboxamide (13 g) was added in about 20 min at 273-278 K. The mixture was heated in an oil bath at 343-353 K for 4 h. The product was extracted with CH2Cl2, washed with water and dried (yield; 8 g, 77.6%) (Sawanishi et al., 1987). Crystals suitable for X-ray analysis were obtained by slow evaporation of a methanol solution.

Refinement

H atoms were positioned geometrically, with N-H = 0.86 Å (for NH2) and C-H = 0.93 and 0.96 Å for aromatic and methyl H, respectively, and constrained to ride on their parent atoms with Uiso(H) = xUeq(C,N), where x = 1.5 for methyl H, and x = 1.2 for all other H atoms.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.

Fig. 2.

Fig. 2.

A partial packing diagram of the title compound. Hydrogen bonds are shown as dashed lines.

Crystal data

C6H8N2 F(000) = 232
Mr = 108.14 Dx = 1.175 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 25 reflections
a = 8.4240 (17) Å θ = 10–12°
b = 7.0560 (14) Å µ = 0.07 mm1
c = 10.658 (2) Å T = 294 K
β = 105.23 (3)° Block, colorless
V = 611.3 (2) Å3 0.30 × 0.20 × 0.10 mm
Z = 4

Data collection

Enraf–Nonius CAD-4 diffractometer 746 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.059
graphite θmax = 25.3°, θmin = 2.8°
ω/2θ scans h = 0→9
Absorption correction: ψ scan (North et al., 1968) k = 0→8
Tmin = 0.978, Tmax = 0.993 l = −12→12
1183 measured reflections 3 standard reflections every 120 min
1106 independent reflections intensity decay: 1%

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.057 H-atom parameters constrained
wR(F2) = 0.154 w = 1/[σ2(Fo2) + (0.05P)2 + 0.5P] where P = (Fo2 + 2Fc2)/3
S = 1.02 (Δ/σ)max < 0.001
1106 reflections Δρmax = 0.19 e Å3
73 parameters Δρmin = −0.19 e Å3
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
N1 0.8161 (3) 0.0759 (3) 0.11504 (18) 0.0480 (6)
N2 1.0351 (3) 0.4188 (3) 0.3558 (2) 0.0595 (7)
H2A 0.9692 0.5137 0.3361 0.071*
H2B 1.1237 0.4285 0.4177 0.071*
C1 0.8752 (4) −0.2454 (4) 0.0569 (3) 0.0616 (8)
H1B 0.7734 −0.2235 −0.0076 0.092*
H1C 0.8626 −0.3507 0.1105 0.092*
H1D 0.9602 −0.2730 0.0148 0.092*
C2 0.9206 (4) −0.0734 (4) 0.1390 (2) 0.0483 (7)
C3 0.8578 (3) 0.2310 (4) 0.1886 (2) 0.0474 (7)
H3A 0.7857 0.3333 0.1709 0.057*
C4 0.9987 (3) 0.2519 (4) 0.2884 (2) 0.0478 (7)
C5 1.1033 (3) 0.0962 (4) 0.3130 (2) 0.0503 (7)
H5A 1.2009 0.1007 0.3788 0.060*
C6 1.0608 (4) −0.0656 (4) 0.2385 (2) 0.0544 (7)
H6A 1.1290 −0.1713 0.2566 0.065*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N1 0.0679 (13) 0.0494 (13) 0.0253 (10) −0.0054 (11) 0.0098 (9) 0.0006 (10)
N2 0.0703 (15) 0.0579 (15) 0.0413 (13) 0.0013 (12) −0.0013 (11) −0.0182 (11)
C1 0.096 (2) 0.0527 (17) 0.0366 (14) −0.0081 (15) 0.0191 (14) −0.0067 (13)
C2 0.0835 (18) 0.0426 (14) 0.0242 (12) −0.0001 (13) 0.0234 (12) 0.0044 (11)
C3 0.0707 (16) 0.0446 (14) 0.0302 (13) 0.0036 (12) 0.0190 (12) 0.0017 (11)
C4 0.0772 (17) 0.0489 (15) 0.0206 (11) −0.0019 (13) 0.0187 (11) −0.0033 (11)
C5 0.0622 (15) 0.0554 (16) 0.0301 (12) 0.0096 (13) 0.0062 (11) 0.0047 (12)
C6 0.0844 (19) 0.0481 (15) 0.0326 (13) 0.0087 (14) 0.0190 (13) 0.0038 (12)

Geometric parameters (Å, °)

N1—C3 1.338 (3) C1—H1D 0.9600
N1—C2 1.353 (3) C2—C6 1.365 (4)
N2—C4 1.371 (3) C3—C4 1.378 (4)
N2—H2A 0.8600 C3—H3A 0.9300
N2—H2B 0.8600 C4—C5 1.390 (4)
C1—C2 1.487 (3) C5—C6 1.383 (4)
C1—H1B 0.9600 C5—H5A 0.9300
C1—H1C 0.9600 C6—H6A 0.9300
C3—N1—C2 117.9 (2) N1—C3—C4 125.4 (2)
C4—N2—H2A 120.0 N1—C3—H3A 117.3
C4—N2—H2B 120.0 C4—C3—H3A 117.3
H2A—N2—H2B 120.0 N2—C4—C3 121.6 (2)
C2—C1—H1B 109.5 N2—C4—C5 122.5 (2)
C2—C1—H1C 109.5 C3—C4—C5 115.9 (2)
H1B—C1—H1C 109.5 C6—C5—C4 119.2 (2)
C2—C1—H1D 109.5 C6—C5—H5A 120.4
H1B—C1—H1D 109.5 C4—C5—H5A 120.4
H1C—C1—H1D 109.5 C2—C6—C5 121.3 (3)
N1—C2—C6 120.2 (2) C2—C6—H6A 119.3
N1—C2—C1 118.1 (2) C5—C6—H6A 119.3
C6—C2—C1 121.7 (3)
C3—N1—C2—C6 2.2 (3) N2—C4—C5—C6 −178.1 (2)
C3—N1—C2—C1 −179.6 (2) C3—C4—C5—C6 −0.3 (4)
C2—N1—C3—C4 −0.5 (4) N1—C2—C6—C5 −2.9 (4)
N1—C3—C4—N2 177.4 (2) C1—C2—C6—C5 178.9 (2)
N1—C3—C4—C5 −0.4 (4) C4—C5—C6—C2 1.9 (4)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N2—H2B···N1i 0.86 2.29 3.131 (3) 165

Symmetry codes: (i) x+1/2, −y+1/2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HK2583).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Enraf–Nonius (1989). CAD-4 Software Enraf–Nonius, Delft, The Netherlands.
  3. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  4. Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  5. Harms, K. & Wocadlo, S. (1995). XCAD4 University of Marburg, Germany.
  6. North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
  7. Sawanishi, H., Tajima, K. & Tsuchiya, T. (1987). Chem. Pharm. Bull.35, 4101–4109.
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808040531/hk2583sup1.cif

e-65-0o124-sup1.cif (13.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808040531/hk2583Isup2.hkl

e-65-0o124-Isup2.hkl (54.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES