Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Dec 17;65(Pt 1):o126. doi: 10.1107/S1600536808042165

3-Phenyl-1H-1,2,4-triazol-5-amine–5-phenyl-1H-1,2,4-triazol-3-amine (1/1)

Anton V Dolzhenko a,*, Geok Kheng Tan b, Lip Lin Koh b, Anna V Dolzhenko a, Wai Keung Chui a
PMCID: PMC2968046  PMID: 21581587

Abstract

In the title compound, C8H8N4·C8H8N4, two tautomers, viz. 3-phenyl-1,2,4-triazol-5-amine and 5-phenyl-1,2,4-triazol-3-amine, are crystallized together in equal amounts. The 3-phenyl-1,2,4-triazol-5-amine mol­ecule is essentially planar; the phenyl ring makes a dihedral angle of 2.3 (2)° with the mean plane of the 1,2,4-triazole ring. In the 5-phenyl-1,2,4-triazol-3-amine tautomer, the mean planes of the phenyl and 1,2,4-triazole rings form a dihedral angle of 30.8 (2)°. The π-electron delocalization of the amino group with the 1,2,4-triazole nucleus in the 3-phenyl-1,2,4-triazol-5-amine mol­ecule is more extensive than that in the 5-phenyl-1,2,4-triazol-3-amine tautomer. The mol­ecules are linked into a two-dimensional network parallel to (100) by N—H⋯N hydrogen bonds.

Related literature

For a summary of structural data for 1,2,4-triazoles, see: Buzykin et al. (2006). For the crystal structure of 3-pyridin-2-yl-1,2,4-triazol-5-amine, see: Dolzhenko et al. (2009). For the use of 1,2,4-triazol-5-amines as building blocks in the synthesis of fused heterocyclic systems, see: Dolzhenko et al. (2006, 2007a ,b ); Fischer (2007).graphic file with name e-65-0o126-scheme1.jpg

Experimental

Crystal data

  • C8H8N4·C8H8N4

  • M r = 320.36

  • Monoclinic, Inline graphic

  • a = 17.817 (2) Å

  • b = 5.0398 (6) Å

  • c = 18.637 (2) Å

  • β = 113.573 (4)°

  • V = 1533.9 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 223 (2) K

  • 0.60 × 0.10 × 0.06 mm

Data collection

  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2001) T min = 0.947, T max = 0.995

  • 10288 measured reflections

  • 3523 independent reflections

  • 2394 reflections with I > 2σ(I)

  • R int = 0.063

Refinement

  • R[F 2 > 2σ(F 2)] = 0.067

  • wR(F 2) = 0.168

  • S = 0.99

  • 3523 reflections

  • 241 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.43 e Å−3

  • Δρmin = −0.24 e Å−3

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXS97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808042165/ci2720sup1.cif

e-65-0o126-sup1.cif (17.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808042165/ci2720Isup2.hkl

e-65-0o126-Isup2.hkl (172.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3N⋯N2i 0.89 (3) 2.08 (3) 2.966 (3) 175 (3)
N4—H4A⋯N1ii 0.92 (3) 2.09 (3) 3.011 (3) 173 (3)
N4—H4B⋯N8i 0.85 (3) 2.25 (3) 3.091 (3) 170 (3)
N6—H6N⋯N5iii 0.87 (4) 2.04 (4) 2.879 (3) 159 (3)
N8—H8A⋯N2 0.81 (3) 2.41 (3) 3.206 (3) 168 (3)
N8—H8B⋯N7iv 0.94 (4) 2.19 (4) 3.115 (3) 169 (3)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Acknowledgments

This work was supported by the National Medical Research Council, Singapore (grant Nos. NMRC/NIG/0019/2008 and NMRC/NIG/0020/2008).

supplementary crystallographic information

Comment

1,2,4-Triazol-5-amines have been used as building blocks for the synthesis of fused heterocyclic systems, e.g. 1,2,4-triazolo[1,5-a]pyrimidines (Fischer, 2007) and 1,2,4-triazolo[1,5-a][1,3,5]triazines (Dolzhenko et al., 2006). Herein, we report the structural study of 3(5)-phenyl-1,2,4-triazol-5(3)-amine, which was used as a synthon in our previous works (Dolzhenko et al., 2007a,b).

Due to annular tautomerism in 1,2,4-triazole ring, there is a theoretical possibility of three tautomeric forms, namely 3-phenyl-1,2,4-triazol-5-amine (I), 5-phenyl-1,2,4-triazol-3-amine (II), and 5-phenyl-4H-1,2,4-triazol-3-amine (III) (Fig.1).

Usually, tautomerizable 1,2,4-triazoles with nonequivalent substituents at positions 3 and 5 crystallize as a tautomer bearing at position 5 substituent with relatively more pronounced electronodonor properties (Buzykin et al., 2006). Considering significant difference in electronic properties of phenyl and amino group, the crystal would be assembled from the molecules of tautomer I analogously to the reported 3-pyridin-2-yl-1,2,4-triazol-5-amine (Dolzhenko et al., 2009). Surprisingly, two tautomeric forms I and II were found crystallized together in the crystal. To the best of our knowledge, this is the first example of existence in crystal of unequally 3,5-disubstituted tautomerizable 1,2,4-triazole tautomeric form with electronodonor group located at position 3.

The geometry of the tautomer I molecule is essentially planar (Fig.2). The amino group is involved in π-electron delocalization with the 1,2,4-triazole nucleus. It is almost planar with small deviation 0.06 (2) Å of the nitrogen atom from the C8/H4A/H4B plane. The length of the C8—N4 bond is 1.337 (3) Å. The π-electron delocalization of the amino group of II with the 1,2,4-triazole nucleus is significantly lower. The nitrogen atom (N8) of the amino group adopts a pyramidal configuration with 0.21 (2) Å deviation of the nitrogen atom from the C16/H8A/H8B plane. The C16—N8 bond [1.372 (3) Å] is also longer. The phenyl ring of I makes a small dihedral angle of 2.3 (2)° with the mean plane of the 1,2,4-triazole ring. The molecule of tautomer II loses this planarity. The mean planes of the phenyl and 1,2,4-triazole rings of II form a dihedral angle of 30.8 (2)°.

The molecules are linked into a two-dimensional network parallel to the (100) by N—H···N hydrogen bonds (Table 1 and Fig.3).

Experimental

(5)-Phenyl-1,2,4-triazol-5(3)-amine was prepared according to Dolzhenko et al. (2007a,b). The crystals suitable for crystallographic analysis were grown by recrystallization from ethanol.

Refinement

N-bound H-atoms were located in a difference map and refined freely. C-bound H atoms were positioned geometrically (C-H = 0.94 Å) and were constrained in a riding motion approximation with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.

Fig. 1.

Possible tautomers of 3(5)-phenyl-1,2,4-triazol-5(3)-amine.

Fig. 2.

Fig. 2.

The molecular structure of 3(5)-phenyl-1,2,4-triazol-5(3)-amine with the atomic numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

Fig. 3.

Fig. 3.

Molecular packing in the crystal, viewed along the b axis. Hydrogen bonds are shown as dashed lines.

Crystal data

C8H8N4·C8H8N4 F(000) = 672
Mr = 320.36 Dx = 1.387 Mg m3
Monoclinic, P21/c Melting point: 460 K
Hall symbol: -P 2ybc Mo Kα radiation, λ = 0.71073 Å
a = 17.817 (2) Å Cell parameters from 1028 reflections
b = 5.0398 (6) Å θ = 2.4–22.6°
c = 18.637 (2) Å µ = 0.09 mm1
β = 113.573 (4)° T = 223 K
V = 1533.9 (3) Å3 Rod, colourless
Z = 4 0.60 × 0.10 × 0.06 mm

Data collection

Bruker SMART APEX CCD diffractometer 3523 independent reflections
Radiation source: fine-focus sealed tube 2394 reflections with I > 2σ(I)
graphite Rint = 0.063
φ and ω scans θmax = 27.5°, θmin = 2.2°
Absorption correction: multi-scan (SADABS; Sheldrick, 2001) h = −17→23
Tmin = 0.947, Tmax = 0.995 k = −6→6
10288 measured reflections l = −24→20

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.067 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.168 H atoms treated by a mixture of independent and constrained refinement
S = 0.99 w = 1/[σ2(Fo2) + (0.0813P)2 + 0.5041P] where P = (Fo2 + 2Fc2)/3
3523 reflections (Δ/σ)max = 0.001
241 parameters Δρmax = 0.43 e Å3
0 restraints Δρmin = −0.24 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
N1 0.45958 (12) 0.2679 (4) 0.41243 (11) 0.0227 (5)
N2 0.44655 (12) 0.1498 (4) 0.29112 (11) 0.0228 (5)
N3 0.50228 (12) 0.3557 (4) 0.31965 (12) 0.0232 (5)
H3N 0.5206 (17) 0.441 (6) 0.2883 (17) 0.034 (8)*
N4 0.55437 (15) 0.6210 (5) 0.43462 (14) 0.0306 (5)
H4A 0.5543 (18) 0.650 (6) 0.483 (2) 0.047 (9)*
H4B 0.5900 (18) 0.694 (6) 0.4217 (17) 0.038 (8)*
C1 0.36387 (14) −0.0976 (5) 0.34673 (13) 0.0221 (5)
C2 0.32601 (15) −0.2542 (5) 0.28099 (14) 0.0275 (6)
H2 0.3384 −0.2297 0.2369 0.033*
C3 0.26999 (16) −0.4464 (5) 0.27973 (16) 0.0326 (6)
H3 0.2450 −0.5525 0.2349 0.039*
C4 0.25056 (16) −0.4837 (5) 0.34337 (16) 0.0317 (6)
H4 0.2119 −0.6128 0.3420 0.038*
C5 0.28814 (18) −0.3303 (6) 0.40898 (17) 0.0405 (7)
H5 0.2754 −0.3557 0.4528 0.049*
C6 0.34456 (17) −0.1385 (6) 0.41101 (16) 0.0352 (7)
H6 0.3700 −0.0352 0.4563 0.042*
C7 0.42378 (14) 0.1068 (5) 0.34941 (13) 0.0205 (5)
C8 0.50768 (14) 0.4241 (5) 0.39146 (13) 0.0223 (5)
N5 0.18197 (12) 0.2602 (4) 0.01779 (11) 0.0225 (5)
N6 0.17613 (13) −0.1706 (4) 0.02735 (12) 0.0241 (5)
H6N 0.165 (2) −0.339 (7) 0.0188 (19) 0.057 (10)*
N7 0.25003 (12) −0.1005 (4) 0.08543 (11) 0.0247 (5)
N8 0.31434 (13) 0.3193 (5) 0.12197 (13) 0.0257 (5)
H8A 0.3424 (19) 0.261 (6) 0.1652 (19) 0.042 (9)*
H8B 0.302 (2) 0.500 (7) 0.1168 (19) 0.055 (10)*
C9 0.05728 (14) 0.0322 (5) −0.07822 (14) 0.0237 (5)
C10 0.03648 (17) 0.2181 (5) −0.13815 (16) 0.0341 (7)
H10 0.0741 0.3502 −0.1371 0.041*
C11 −0.04013 (18) 0.2079 (6) −0.19945 (17) 0.0444 (8)
H11 −0.0542 0.3339 −0.2399 0.053*
C12 −0.09593 (17) 0.0147 (6) −0.20168 (17) 0.0423 (8)
H12 −0.1477 0.0092 −0.2435 0.051*
C13 −0.07527 (17) −0.1708 (6) −0.14209 (18) 0.0417 (8)
H13 −0.1131 −0.3025 −0.1432 0.050*
C14 0.00090 (17) −0.1621 (6) −0.08100 (16) 0.0345 (6)
H14A 0.0148 −0.2891 −0.0408 0.041*
C15 0.13744 (15) 0.0420 (5) −0.01207 (13) 0.0219 (5)
C16 0.24976 (14) 0.1614 (5) 0.07732 (13) 0.0198 (5)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N1 0.0273 (11) 0.0216 (10) 0.0205 (10) −0.0031 (9) 0.0108 (9) −0.0002 (8)
N2 0.0274 (11) 0.0216 (10) 0.0200 (10) −0.0022 (9) 0.0099 (8) −0.0016 (8)
N3 0.0306 (11) 0.0236 (11) 0.0193 (10) −0.0060 (9) 0.0143 (9) −0.0013 (9)
N4 0.0378 (13) 0.0325 (13) 0.0266 (12) −0.0140 (11) 0.0182 (10) −0.0090 (10)
C1 0.0229 (12) 0.0212 (12) 0.0217 (12) 0.0036 (10) 0.0082 (10) −0.0010 (10)
C2 0.0293 (13) 0.0302 (14) 0.0244 (13) −0.0007 (11) 0.0122 (11) −0.0013 (11)
C3 0.0286 (14) 0.0343 (15) 0.0310 (14) −0.0080 (12) 0.0079 (11) −0.0104 (12)
C4 0.0268 (14) 0.0275 (14) 0.0419 (15) −0.0067 (11) 0.0150 (12) 0.0017 (12)
C5 0.0476 (18) 0.0449 (17) 0.0391 (16) −0.0131 (15) 0.0279 (14) −0.0024 (14)
C6 0.0448 (16) 0.0356 (15) 0.0298 (14) −0.0133 (13) 0.0197 (13) −0.0075 (12)
C7 0.0249 (12) 0.0190 (12) 0.0176 (11) 0.0031 (10) 0.0085 (9) 0.0007 (9)
C8 0.0237 (12) 0.0228 (13) 0.0208 (12) 0.0009 (10) 0.0093 (10) 0.0011 (10)
N5 0.0246 (10) 0.0196 (10) 0.0214 (10) 0.0019 (8) 0.0072 (8) −0.0015 (8)
N6 0.0264 (11) 0.0176 (11) 0.0250 (11) 0.0004 (9) 0.0067 (9) 0.0018 (9)
N7 0.0276 (11) 0.0219 (11) 0.0211 (10) 0.0015 (9) 0.0061 (9) 0.0004 (8)
N8 0.0267 (12) 0.0222 (12) 0.0223 (11) 0.0028 (9) 0.0037 (9) −0.0001 (9)
C9 0.0223 (12) 0.0203 (12) 0.0277 (13) 0.0023 (10) 0.0091 (10) −0.0052 (10)
C10 0.0383 (15) 0.0234 (13) 0.0338 (14) 0.0007 (12) 0.0073 (12) 0.0002 (11)
C11 0.0453 (18) 0.0347 (17) 0.0357 (16) 0.0085 (14) −0.0022 (14) 0.0022 (13)
C12 0.0278 (15) 0.0420 (18) 0.0431 (17) 0.0073 (13) −0.0008 (13) −0.0139 (14)
C13 0.0285 (15) 0.0431 (17) 0.0506 (18) −0.0101 (13) 0.0126 (13) −0.0157 (15)
C14 0.0357 (15) 0.0313 (15) 0.0349 (15) −0.0016 (12) 0.0123 (12) −0.0024 (12)
C15 0.0261 (12) 0.0193 (12) 0.0218 (12) 0.0001 (10) 0.0113 (10) −0.0022 (10)
C16 0.0241 (12) 0.0196 (12) 0.0166 (11) 0.0031 (10) 0.0092 (9) −0.0009 (9)

Geometric parameters (Å, °)

N1—C8 1.332 (3) N5—C15 1.340 (3)
N1—C7 1.359 (3) N5—C16 1.366 (3)
N2—C7 1.321 (3) N6—C15 1.326 (3)
N2—N3 1.387 (3) N6—N7 1.375 (3)
N3—C8 1.348 (3) N6—H6N 0.87 (4)
N3—H3N 0.89 (3) N7—C16 1.328 (3)
N4—C8 1.337 (3) N8—C16 1.372 (3)
N4—H4A 0.92 (3) N8—H8A 0.81 (3)
N4—H4B 0.85 (3) N8—H8B 0.94 (4)
C1—C2 1.385 (3) C9—C14 1.389 (4)
C1—C6 1.388 (3) C9—C10 1.390 (4)
C1—C7 1.470 (3) C9—C15 1.468 (3)
C2—C3 1.385 (4) C10—C11 1.387 (4)
C2—H2 0.94 C10—H10 0.94
C3—C4 1.375 (4) C11—C12 1.380 (4)
C3—H3 0.94 C11—H11 0.94
C4—C5 1.373 (4) C12—C13 1.384 (4)
C4—H4 0.94 C12—H12 0.94
C5—C6 1.384 (4) C13—C14 1.380 (4)
C5—H5 0.94 C13—H13 0.94
C6—H6 0.94 C14—H14A 0.94
C8—N1—C7 103.55 (19) C15—N5—C16 102.86 (19)
C7—N2—N3 102.47 (18) C15—N6—N7 110.6 (2)
C8—N3—N2 109.15 (19) C15—N6—H6N 131 (2)
C8—N3—H3N 129.2 (18) N7—N6—H6N 118 (2)
N2—N3—H3N 120.4 (18) C16—N7—N6 101.93 (18)
C8—N4—H4A 118 (2) C16—N8—H8A 115 (2)
C8—N4—H4B 121 (2) C16—N8—H8B 113 (2)
H4A—N4—H4B 120 (3) H8A—N8—H8B 119 (3)
C2—C1—C6 118.5 (2) C14—C9—C10 119.3 (2)
C2—C1—C7 121.3 (2) C14—C9—C15 120.1 (2)
C6—C1—C7 120.2 (2) C10—C9—C15 120.7 (2)
C3—C2—C1 120.4 (2) C11—C10—C9 119.7 (3)
C3—C2—H2 119.8 C11—C10—H10 120.2
C1—C2—H2 119.8 C9—C10—H10 120.2
C4—C3—C2 120.6 (2) C12—C11—C10 120.7 (3)
C4—C3—H3 119.7 C12—C11—H11 119.6
C2—C3—H3 119.7 C10—C11—H11 119.6
C5—C4—C3 119.3 (2) C11—C12—C13 119.7 (3)
C5—C4—H4 120.3 C11—C12—H12 120.2
C3—C4—H4 120.3 C13—C12—H12 120.2
C4—C5—C6 120.5 (3) C14—C13—C12 119.9 (3)
C4—C5—H5 119.7 C14—C13—H13 120.0
C6—C5—H5 119.7 C12—C13—H13 120.0
C5—C6—C1 120.5 (3) C13—C14—C9 120.7 (3)
C5—C6—H6 119.7 C13—C14—H14A 119.6
C1—C6—H6 119.7 C9—C14—H14A 119.6
N2—C7—N1 114.8 (2) N6—C15—N5 110.0 (2)
N2—C7—C1 123.0 (2) N6—C15—C9 123.7 (2)
N1—C7—C1 122.1 (2) N5—C15—C9 126.3 (2)
N1—C8—N4 125.5 (2) N7—C16—N5 114.6 (2)
N1—C8—N3 110.0 (2) N7—C16—N8 122.9 (2)
N4—C8—N3 124.6 (2) N5—C16—N8 122.4 (2)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N3—H3N···N2i 0.89 (3) 2.08 (3) 2.966 (3) 175 (3)
N4—H4A···N1ii 0.92 (3) 2.09 (3) 3.011 (3) 173 (3)
N4—H4B···N8i 0.85 (3) 2.25 (3) 3.091 (3) 170 (3)
N6—H6N···N5iii 0.87 (4) 2.04 (4) 2.879 (3) 159 (3)
N8—H8A···N2 0.81 (3) 2.41 (3) 3.206 (3) 168 (3)
N8—H8B···N7iv 0.94 (4) 2.19 (4) 3.115 (3) 169 (3)

Symmetry codes: (i) −x+1, y+1/2, −z+1/2; (ii) −x+1, −y+1, −z+1; (iii) x, y−1, z; (iv) x, y+1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI2720).

References

  1. Bruker (2001). SMART and SAINT Bruker AXS GmbH, Karlsruhe, Germany.
  2. Buzykin, B. I., Mironova, E. V., Nabiullin, V. N., Gubaidullin, A. T. & Litvinov, I. A. (2006). Russ. J. Gen. Chem.76, 1471–1486.
  3. Dolzhenko, A. V., Dolzhenko, A. V. & Chui, W. K. (2006). Heterocycles, 68, 1723–1759.
  4. Dolzhenko, A. V., Dolzhenko, A. V. & Chui, W. K. (2007a). Heterocycles, 71, 429–436.
  5. Dolzhenko, A. V., Dolzhenko, A. V. & Chui, W. K. (2007b). Tetrahedron, 63, 12888–12895.
  6. Dolzhenko, A. V., Tan, G. K., Koh, L. L., Dolzhenko, A. V. & Chui, W. K. (2009). Acta Cryst. E65, o125. [DOI] [PMC free article] [PubMed]
  7. Fischer, G. (2007). Adv. Heterocycl. Chem.95, 143–219.
  8. Sheldrick, G. M. (2001). SADABS University of Göttingen, Germany.
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808042165/ci2720sup1.cif

e-65-0o126-sup1.cif (17.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808042165/ci2720Isup2.hkl

e-65-0o126-Isup2.hkl (172.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES