Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Dec 17;65(Pt 1):o134. doi: 10.1107/S1600536808042104

Methyl 5-bromo-6-methyl­picolinate

Ya-Ming Wu a,*, Chun-Ming Wu b, Yong Wang c
PMCID: PMC2968052  PMID: 21581594

Abstract

The title compound, C8H8BrNO2, does not show any significant inter­molecular π–π or C—H⋯π inter­actions in the crystal packing except for one weak Br⋯Br [3.715 (1) Å] inter­action.

Related literature

The title compound is an important inter­mediate for the construction of novel supported PyOX ligands, see: Oila et al. (2005). For bond-length data, see: Allen et al. (1987).graphic file with name e-65-0o134-scheme1.jpg

Experimental

Crystal data

  • C8H8BrNO2

  • M r = 230.06

  • Monoclinic, Inline graphic

  • a = 18.518 (4) Å

  • b = 4.1040 (8) Å

  • c = 12.442 (3) Å

  • β = 109.52 (3)°

  • V = 891.2 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 4.57 mm−1

  • T = 293 (2) K

  • 0.20 × 0.10 × 0.10 mm

Data collection

  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968) T min = 0.462, T max = 0.658

  • 1602 measured reflections

  • 1602 independent reflections

  • 975 reflections with I > 2σ(I)

  • 3 standard reflections every 200 reflections intensity decay: 1%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.061

  • wR(F 2) = 0.066

  • S = 1.75

  • 1602 reflections

  • 110 parameters

  • H-atom parameters constrained

  • Δρmax = 0.53 e Å−3

  • Δρmin = −0.61 e Å−3

Data collection: CAD-4 Software (Enraf–Nonius, 1985); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808042104/lx2083sup1.cif

e-65-0o134-sup1.cif (13.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808042104/lx2083Isup2.hkl

e-65-0o134-Isup2.hkl (79KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the Center of Testing and Analysis, Nanjing University, for support.

supplementary crystallographic information

Comment

The title compound is one of important intermediates for construction of novel supported PyOX-ligands (Oila et al., 2005). Here we report the crystal structure of the title compound, methyl 5-bromo-6-methylpicolinate (Fig. 1).

In the title compound, the bond lengths and angles are within normal ranges (Allen et al., 1987). The crystal structure is stabilized by a weak Br···Bri interaction at 3.715 (1) Å (Fig. 2; symmetry code as in Fig. 2).

Experimental

The title compound, (I) was prepared by a method reported in literature (Oila et al., 2005) with some modification. The crystals were obtained by dissolving I (0.2 g) in methanol (50 ml) and evaporating the solvent slowly at room temperature for about 3 d.

Refinement

H atoms were positioned geometrically, with O—H = 0.82 and C—H = 0.93 Å for aromatic H, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C/O), where x = 1.2 for aromatic H and x = 1.5 for other H.

Figures

Fig. 1.

Fig. 1.

A drawing of the title molecular structure, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.

Fig. 2.

Fig. 2.

Br···Br interaction in the title compound. [Symmetry code: (i) -x+1, y+1/2, -z+1/2.]

Crystal data

C8H8BrNO2 F(000) = 456
Mr = 230.06 Dx = 1.715 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 25 reflections
a = 18.518 (4) Å θ = 10–14°
b = 4.1040 (8) Å µ = 4.57 mm1
c = 12.442 (3) Å T = 293 K
β = 109.52 (3)° Block, colorless
V = 891.2 (4) Å3 0.20 × 0.10 × 0.10 mm
Z = 4

Data collection

Enraf–Nonius CAD-4 diffractometer 975 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.0000
graphite θmax = 25.3°, θmin = 1.2°
ω/2θ scans h = −22→20
Absorption correction: ψ scan (North et al., 1968) k = 0→4
Tmin = 0.462, Tmax = 0.658 l = 0→14
1602 measured reflections 3 standard reflections every 200 reflections
1602 independent reflections intensity decay: 1%

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.061 Hydrogen site location: difference Fourier map
wR(F2) = 0.066 H-atom parameters constrained
S = 1.75 w = 1/[σ2(Fo2)]
1602 reflections (Δ/σ)max < 0.000
110 parameters Δρmax = 0.53 e Å3
0 restraints Δρmin = −0.61 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Br 0.41815 (4) 0.6507 (2) 0.25731 (6) 0.0546 (3)
O1 0.0882 (2) −0.1451 (13) 0.2125 (3) 0.0691 (16)
O2 0.1349 (2) −0.0435 (11) 0.3986 (4) 0.0533 (15)
N 0.2635 (3) 0.2009 (15) 0.3797 (4) 0.0450 (17)
C1 0.3893 (3) 0.4149 (17) 0.4811 (4) 0.067 (2)
H1A 0.3707 0.3787 0.5434 0.101*
H1B 0.4059 0.6370 0.4822 0.101*
H1C 0.4317 0.2717 0.4882 0.101*
C2 0.3260 (3) 0.3477 (18) 0.3698 (5) 0.0344 (16)
C3 0.3290 (3) 0.4444 (16) 0.2646 (5) 0.039 (2)
C4 0.2680 (3) 0.3789 (19) 0.1651 (5) 0.059 (2)
H4A 0.2702 0.4358 0.0939 0.071*
C5 0.2053 (3) 0.2298 (18) 0.1755 (5) 0.050 (2)
H5A 0.1632 0.1866 0.1109 0.060*
C6 0.2038 (3) 0.1425 (19) 0.2814 (5) 0.0426 (18)
C7 0.1372 (4) −0.0335 (18) 0.2958 (6) 0.050 (2)
C8 0.0676 (3) −0.1896 (19) 0.4127 (5) 0.070 (2)
H8A 0.0724 −0.1875 0.4920 0.104*
H8B 0.0627 −0.4104 0.3857 0.104*
H8C 0.0230 −0.0679 0.3698 0.104*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Br 0.0482 (4) 0.0590 (5) 0.0589 (5) −0.0020 (6) 0.0211 (3) 0.0028 (6)
O1 0.048 (3) 0.092 (4) 0.055 (4) −0.011 (4) 0.001 (3) −0.013 (4)
O2 0.043 (3) 0.070 (4) 0.046 (3) −0.007 (3) 0.013 (2) −0.002 (3)
N 0.029 (3) 0.065 (5) 0.033 (3) −0.006 (4) 0.000 (3) 0.004 (4)
C1 0.056 (4) 0.087 (7) 0.043 (4) −0.027 (5) −0.004 (4) 0.012 (5)
C2 0.026 (4) 0.031 (4) 0.035 (4) −0.003 (4) −0.004 (3) −0.004 (5)
C3 0.034 (4) 0.045 (6) 0.040 (4) 0.002 (4) 0.014 (4) 0.009 (4)
C4 0.049 (4) 0.088 (7) 0.033 (4) 0.004 (6) 0.005 (4) 0.031 (5)
C5 0.038 (4) 0.076 (7) 0.029 (4) 0.001 (4) 0.002 (3) 0.002 (4)
C6 0.025 (4) 0.060 (5) 0.042 (4) 0.004 (5) 0.011 (3) −0.001 (5)
C7 0.037 (5) 0.060 (6) 0.043 (5) 0.004 (4) 0.000 (4) −0.010 (5)
C8 0.051 (4) 0.079 (7) 0.089 (5) −0.011 (5) 0.037 (4) 0.010 (6)

Geometric parameters (Å, °)

Br—Bri 3.715 (1) C2—C3 1.387 (6)
Br—C3 1.884 (5) C3—C4 1.396 (6)
O1—C7 1.218 (6) C4—C5 1.356 (7)
O2—C7 1.294 (6) C4—H4A 0.9300
O2—C8 1.446 (6) C5—C6 1.375 (7)
N—C2 1.347 (6) C5—H5A 0.9300
N—C6 1.368 (6) C6—C7 1.491 (8)
C1—C2 1.510 (6) C8—H8A 0.9600
C1—H1A 0.9600 C8—H8B 0.9600
C1—H1B 0.9600 C8—H8C 0.9600
C1—H1C 0.9600
C7—O2—C8 116.6 (5) C3—C4—H4A 121.0
C2—N—C6 117.3 (5) C4—C5—C6 120.0 (6)
C2—C1—H1A 109.5 C4—C5—H5A 120.0
C2—C1—H1B 109.5 C6—C5—H5A 120.0
H1A—C1—H1B 109.5 N—C6—C5 122.9 (6)
C2—C1—H1C 109.5 N—C6—C7 115.5 (6)
H1A—C1—H1C 109.5 C5—C6—C7 121.6 (6)
H1B—C1—H1C 109.5 O1—C7—O2 124.6 (7)
N—C2—C3 121.4 (5) O1—C7—C6 119.4 (7)
N—C2—C1 115.2 (5) O2—C7—C6 115.9 (6)
C3—C2—C1 123.3 (6) O2—C8—H8A 109.5
C4—C3—C2 120.4 (5) O2—C8—H8B 109.5
C4—C3—Br 120.5 (5) H8A—C8—H8B 109.5
C2—C3—Br 119.1 (5) O2—C8—H8C 109.5
C5—C4—C3 117.9 (6) H8A—C8—H8C 109.5
C5—C4—H4A 121.0 H8B—C8—H8C 109.5
C6—N—C2—C3 1.8 (10) C2—N—C6—C7 177.4 (6)
C6—N—C2—C1 178.4 (6) C4—C5—C6—N 0.4 (11)
N—C2—C3—C4 −2.7 (11) C4—C5—C6—C7 −177.5 (7)
C1—C2—C3—C4 −179.0 (6) C8—O2—C7—O1 −2.1 (11)
N—C2—C3—Br 179.6 (5) C8—O2—C7—C6 175.0 (6)
C1—C2—C3—Br 3.3 (9) N—C6—C7—O1 −167.1 (7)
C2—C3—C4—C5 2.3 (11) C5—C6—C7—O1 11.0 (11)
Br—C3—C4—C5 180.0 (5) N—C6—C7—O2 15.6 (9)
C3—C4—C5—C6 −1.2 (11) C5—C6—C7—O2 −166.3 (7)
C2—N—C6—C5 −0.6 (10)

Symmetry codes: (i) −x+1, y+1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LX2083).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Enraf–Nonius (1985). CAD-4 Software Enraf–Nonius, Delft, The Netherlands.
  3. Harms, K. & Wocadlo, S. (1995). XCAD4 University of Marburg, Germany.
  4. North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
  5. Oila, M. J., Tois, J. E. & Koskinen, A. M. P. (2005). Tetrahedron, 61, 10748–10756.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808042104/lx2083sup1.cif

e-65-0o134-sup1.cif (13.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808042104/lx2083Isup2.hkl

e-65-0o134-Isup2.hkl (79KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES