Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Dec 17;65(Pt 1):o136. doi: 10.1107/S1600536808042098

6-Bromo-1-butylindoline-2,3-dione

Lei Ji a, Qi Fang b,*, Jian-dong Fan b
PMCID: PMC2968054  PMID: 21581596

Abstract

There are two independent mol­ecules in the asymmetric unit of the title compound, C12H12BrNO2. The C—C bond lengths of the two carbonyl C atoms of the five-membered rings are distinctly longer than a normal Csp 2—Csp 2 single bond. One of the mol­ecules makes parallel self-coupled (inversion) dimers by π–π inter­actions with phen­yl–phenyl inter­planar distances of 3.403 (2) Å. The other mol­ecule also forms self-dimers at longer phen­yl–phenyl plane distances [3.649 (2) Å]. In the crystal, a C—H⋯O interaction is seen.

Related literature

For synthesis and applications, see: Kopka et al. (2006); Pirrung et al. (2005); Zhou et al. (2006). For related crystal structures, see: Goldschmidt & Llewellyn (1950); Palenik et al. (1990).graphic file with name e-65-0o136-scheme1.jpg

Experimental

Crystal data

  • C12H12BrNO2

  • M r = 282.14

  • Monoclinic, Inline graphic

  • a = 13.3097 (2) Å

  • b = 11.8793 (2) Å

  • c = 16.2238 (2) Å

  • β = 112.340 (1)°

  • V = 2372.62 (6) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 3.45 mm−1

  • T = 296 (2) K

  • 0.37 × 0.13 × 0.11 mm

Data collection

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005) T min = 0.526, T max = 0.744 (expected range = 0.487–0.689)

  • 16713 measured reflections

  • 5170 independent reflections

  • 2424 reflections with I > 2σ(I)

  • R int = 0.076

Refinement

  • R[F 2 > 2σ(F 2)] = 0.039

  • wR(F 2) = 0.070

  • S = 0.93

  • 5170 reflections

  • 364 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.49 e Å−3

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXL97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: WinGX (Farrugia, 1999).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808042098/cs2100sup1.cif

e-65-0o136-sup1.cif (22KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808042098/cs2100Isup2.hkl

e-65-0o136-Isup2.hkl (248.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected bond lengths (Å).

N1—C1 1.375 (3)
N1—C8 1.411 (4)
N1—C9 1.425 (4)
C1—C2 1.545 (4)
N2—C21 1.373 (3)
N2—C28 1.401 (3)
N2—C29 1.467 (4)
C21—C22 1.558 (4)

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7⋯O3i 0.95 (3) 2.44 (3) 3.367 (5) 165 (2)

Symmetry code: (i) Inline graphic.

Acknowledgments

This work are supported by the PhD Foundation of the Ministry of Education of China and by the National Natural Science Foundation of China (grant No. 50673054).

supplementary crystallographic information

Comment

Isatin, 2,3-indolinedione is traditionally obtained from oxidation of oxindole and indigo blue. Its derivates have long been used as precursors of medicines and reductive dyes (Zhou et al., 2006; Pirrung et al., 2005; Kopka et al., 2006). The first crystal structure report on isatin was by Goldschmidt and Llewellyn, 1950. Here we report the crystal structure of N-butyl-6-bromoisatin. There are two independent molecules in the asymmetric unit with very similar bond parameters. Except for the fused aromatic bond of C3≐C8 in one molecule and C23≐C28 bond in the other molecule, four other bonds in the five-membered heterocyclic rings can be classified as single C—C bonds and π-conjugated C≐N bonds. The C1—C2 (1.545 (4) Å) and C21—C22 (1.558 (4) Å) bond lengths are longer than expected for a C(sp2)-C(sp2) single bond. This may be the result of the repulsion of the lone pair electrons of the two oxygen atoms in cis-diones (Palenik et al., 1990). Nitrogen atoms and their three bonded carbons are perfectly co-planar, showing that the sp2 N atoms allocate two pz electrons for π-bonding. The bond lengths of the π-conjugated N≐C bonds (c.f. Table 1) are much shorter than a single C—N bond length. Molecules are packed in dimers (Figure 2). One kind of the independent molecules are linked through a symmetry center to form dimer stack A while two other molecules form another dimer stack B. Mean planes of A and B dimers have a dihedral angle of 85.8 (1)°. The phenyl-phenyl spacing (3.40 (1) Å) in A dimers is considerably shorter than the spacing (3.65 (1) Å) in teh B dimers, indicating relatively stronger intermolecular π-π interactions between these A molecules. The intermolecular interactions in dimer A are further strengthened by C–Br short contacts. The C1···Br1[-x+1, -y+1, -z] and C2···Br1[-x+1, -y+1, -z] in dimer A are 3.476 (3) Å and 3.538 (3) Å, respectively. By comparison, the corresponding C···Br contacts in dimer B are much longer with the shortest distance being 3.672 (4) Å for C22···Br2[-x+1, -y+1, -z]. It may be the result of these different C···Br contacts that the C1—C2 bond length in dimer A is marginally shorter than the C21—C22 bond in dimer B. Amongst intermolecular C—H···O hydrogen bonds the strongest is the C7—H7···O3 one between dimers A and B (see Table 2).

Experimental

6-Bromoisatin (10.5 g) was dissolved in 100 ml DMSO in a three-necked flask. Then KI (3.50 g), cetyltrimethyl ammonium bromide (1.00 g), and KOH (30.0 g) in 20.0 g water were added. Then 40.0 ml of n-bromobutane was added drop-wise into the above mixture with stirring. The mixture was stirred at 343 K for 2 days under nitrogen protection. The reaction mixture was washed by water, extracted with CHCl3, then the chloroform layer was dried by Na2SO4. After vaporizing the solvent, the crude product was purified by column chromatography, resulting in 9.5 g (yield 71%) N-butyl-6-bromoisatin product. The compound was dissolved in chloroform again. On most of the solvent evaporating at room temperature orange lump title crystals were formed.

Refinement

All H atoms except those on the methyl groups were initially found in difference electron density syntheses and were used in the least-squares refinement. Six H atoms on two terminal methyls could also be located in the difference maps but some H—C bond parameters in the methyl groups became unreasonable. So HFIX 137 instructions were used to restrain the methyl H-positions.

Figures

Fig. 1.

Fig. 1.

Two N-butyl-6-bromoisatin molecules in the asymmetric unit with 30% probability displacement ellipsoids

Fig. 2.

Fig. 2.

The molecular packing of the crystal showing the dimer structure [symmetry code: (i)-x+1, -y+1, -z]

Crystal data

C12H12BrNO2 F(000) = 1136
Mr = 282.14 Dx = 1.580 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 3677 reflections
a = 13.3097 (2) Å θ = 2.2–23.8°
b = 11.8793 (2) Å µ = 3.45 mm1
c = 16.2238 (2) Å T = 296 K
β = 112.340 (1)° Plank, orange
V = 2372.62 (6) Å3 0.37 × 0.13 × 0.11 mm
Z = 8

Data collection

Bruker APEXII CCD diffractometer 5170 independent reflections
Radiation source: fine-focus sealed tube 2424 reflections with I > 2σ(I)
graphite Rint = 0.076
Detector resolution: 10.0 pixels mm-1 θmax = 27.0°, θmin = 1.7°
phi and ω scans h = −16→17
Absorption correction: multi-scan (SADABS; Bruker, 2005) k = −15→10
Tmin = 0.526, Tmax = 0.744 l = −20→20
16713 measured reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.070 w = 1/[σ2(Fo2) + (0.0158P)2] where P = (Fo2 + 2Fc2)/3
S = 0.93 (Δ/σ)max = 0.001
5170 reflections Δρmax = 0.39 e Å3
364 parameters Δρmin = −0.49 e Å3
1 restraint Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.00147 (12)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Br1 0.25474 (2) 0.52247 (4) 0.03130 (3) 0.07546 (17)
O1 0.82928 (15) 0.3064 (2) 0.18511 (13) 0.0649 (7)
O2 0.82426 (16) 0.5497 (2) 0.22161 (15) 0.0682 (7)
N1 0.64300 (18) 0.3303 (3) 0.12570 (15) 0.0448 (7)
C1 0.7490 (2) 0.3648 (3) 0.1675 (2) 0.0477 (9)
C2 0.7445 (2) 0.4919 (3) 0.18633 (19) 0.0475 (9)
C3 0.6286 (2) 0.5203 (3) 0.15321 (19) 0.0431 (9)
C4 0.5754 (3) 0.6195 (4) 0.1517 (2) 0.0519 (10)
H4 0.616 (2) 0.688 (3) 0.1810 (18) 0.058 (10)*
C5 0.4628 (3) 0.6193 (4) 0.1150 (2) 0.0535 (10)
H5 0.4240 (19) 0.690 (3) 0.1167 (16) 0.047 (9)*
C6 0.4095 (2) 0.5211 (4) 0.0815 (2) 0.0476 (9)
C7 0.4595 (2) 0.4196 (4) 0.0807 (2) 0.0435 (9)
H7 0.4227 (18) 0.351 (2) 0.0576 (16) 0.036 (9)*
C8 0.5720 (2) 0.4213 (3) 0.11826 (18) 0.0382 (8)
C9 0.6102 (3) 0.2182 (3) 0.0965 (3) 0.0504 (10)
H9A 0.538 (2) 0.218 (3) 0.040 (2) 0.073 (10)*
H9B 0.659 (2) 0.185 (3) 0.081 (2) 0.078 (13)*
C10 0.5921 (3) 0.1458 (4) 0.1651 (3) 0.0640 (11)
H10B 0.537 (2) 0.185 (2) 0.1859 (17) 0.052 (9)*
H10A 0.658 (2) 0.147 (3) 0.221 (2) 0.070 (11)*
C11 0.5557 (4) 0.0275 (4) 0.1272 (3) 0.0831 (14)
H11A 0.613 (3) −0.012 (3) 0.121 (2) 0.100*
H11B 0.477 (3) 0.032 (3) 0.085 (2) 0.100*
C12 0.5496 (3) −0.0541 (4) 0.1927 (3) 0.1061 (15)
H12A 0.6201 −0.0628 0.2392 0.138 (10)*
H12B 0.5253 −0.1253 0.1641 0.138 (10)*
H12C 0.4993 −0.0276 0.2179 0.138 (10)*
Br2 0.25658 (2) −0.10901 (4) 0.09621 (3) 0.07726 (17)
O3 −0.32733 (16) −0.1957 (2) 0.03877 (14) 0.0728 (8)
O4 −0.30063 (18) −0.2190 (2) −0.13304 (15) 0.0795 (8)
N2 −0.14314 (18) −0.1581 (2) 0.08915 (16) 0.0493 (7)
C21 −0.2438 (3) −0.1837 (3) 0.0266 (2) 0.0550 (10)
C22 −0.2278 (3) −0.1969 (3) −0.0632 (2) 0.0538 (9)
C23 −0.1117 (2) −0.1769 (3) −0.0404 (2) 0.0446 (8)
C24 −0.0483 (3) −0.1808 (3) −0.0900 (3) 0.0552 (10)
H24 −0.084 (2) −0.193 (3) −0.1480 (19) 0.060 (11)*
C25 0.0612 (3) −0.1618 (3) −0.0495 (3) 0.0599 (10)
H25 0.1067 (18) −0.164 (2) −0.0805 (16) 0.035 (8)*
C26 0.1047 (2) −0.1379 (3) 0.0399 (2) 0.0513 (9)
C27 0.0439 (2) −0.1332 (3) 0.0925 (2) 0.0501 (10)
H27 0.0727 (17) −0.120 (2) 0.1503 (16) 0.034 (9)*
C28 −0.0653 (2) −0.1544 (3) 0.0505 (2) 0.0443 (8)
C29 −0.1191 (3) −0.1497 (4) 0.1850 (2) 0.0545 (11)
H29A −0.1731 (19) −0.188 (2) 0.1991 (16) 0.045 (9)*
H29B −0.056 (2) −0.198 (3) 0.2144 (19) 0.068 (11)*
C30 −0.1031 (3) −0.0315 (4) 0.2208 (3) 0.0592 (11)
H30B −0.049 (2) 0.010 (3) 0.200 (2) 0.077 (11)*
H30A −0.162 (2) 0.016 (3) 0.195 (2) 0.067 (12)*
C31 −0.0728 (4) −0.0318 (4) 0.3219 (3) 0.0771 (13)
H31B −0.002 (3) −0.071 (3) 0.355 (2) 0.112 (17)*
H31A −0.133 (3) −0.073 (3) 0.333 (2) 0.103 (14)*
C32 −0.0463 (3) 0.0819 (4) 0.3617 (2) 0.0941 (14)
H32A 0.0122 0.1132 0.3483 0.129 (9)*
H32B −0.0249 0.0766 0.4252 0.129 (9)*
H32C −0.1090 0.1295 0.3376 0.129 (9)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Br1 0.03753 (19) 0.1118 (4) 0.0741 (3) 0.0122 (2) 0.01790 (17) 0.0168 (3)
O1 0.0405 (12) 0.082 (2) 0.0631 (16) 0.0147 (13) 0.0090 (11) −0.0007 (14)
O2 0.0450 (13) 0.081 (2) 0.0662 (16) −0.0181 (13) 0.0076 (12) −0.0127 (15)
N1 0.0369 (14) 0.046 (2) 0.0473 (17) −0.0027 (15) 0.0110 (12) −0.0079 (17)
C1 0.0397 (19) 0.060 (3) 0.039 (2) −0.0006 (19) 0.0107 (16) 0.001 (2)
C2 0.0372 (17) 0.062 (3) 0.038 (2) −0.0066 (19) 0.0086 (15) 0.003 (2)
C3 0.0376 (17) 0.049 (3) 0.038 (2) −0.0040 (19) 0.0091 (15) −0.005 (2)
C4 0.056 (2) 0.045 (3) 0.051 (2) −0.007 (2) 0.0165 (18) −0.006 (2)
C5 0.053 (2) 0.051 (3) 0.056 (2) 0.010 (2) 0.0202 (19) 0.002 (2)
C6 0.0317 (16) 0.069 (3) 0.039 (2) 0.006 (2) 0.0095 (15) 0.005 (2)
C7 0.0361 (18) 0.049 (3) 0.042 (2) −0.008 (2) 0.0114 (16) −0.003 (2)
C8 0.0375 (17) 0.044 (2) 0.0305 (18) 0.0009 (18) 0.0100 (14) 0.0031 (18)
C9 0.052 (2) 0.043 (3) 0.053 (3) 0.005 (2) 0.016 (2) −0.007 (2)
C10 0.072 (3) 0.050 (3) 0.064 (3) −0.009 (2) 0.019 (2) −0.004 (3)
C11 0.087 (3) 0.075 (4) 0.077 (3) −0.005 (3) 0.020 (3) 0.003 (3)
C12 0.121 (4) 0.080 (4) 0.107 (4) −0.018 (3) 0.032 (3) −0.006 (4)
Br2 0.0453 (2) 0.0909 (4) 0.0969 (3) 0.0008 (2) 0.0285 (2) −0.0097 (3)
O3 0.0427 (12) 0.090 (2) 0.0790 (17) −0.0143 (13) 0.0160 (12) −0.0119 (15)
O4 0.0672 (15) 0.094 (2) 0.0514 (16) −0.0202 (15) −0.0066 (13) −0.0106 (16)
N2 0.0385 (14) 0.070 (2) 0.0342 (16) −0.0056 (14) 0.0078 (12) −0.0067 (16)
C21 0.048 (2) 0.059 (3) 0.049 (2) −0.008 (2) 0.0089 (18) −0.010 (2)
C22 0.055 (2) 0.042 (3) 0.052 (2) −0.0093 (19) 0.0065 (18) −0.004 (2)
C23 0.0489 (19) 0.043 (2) 0.036 (2) −0.0037 (17) 0.0100 (17) −0.0023 (19)
C24 0.072 (3) 0.050 (3) 0.036 (2) −0.003 (2) 0.012 (2) −0.003 (2)
C25 0.069 (3) 0.063 (3) 0.059 (3) 0.007 (2) 0.036 (2) 0.003 (2)
C26 0.0444 (18) 0.050 (3) 0.057 (2) 0.0006 (17) 0.0175 (18) −0.001 (2)
C27 0.0423 (19) 0.064 (3) 0.038 (2) 0.0006 (18) 0.0095 (18) −0.006 (2)
C28 0.0395 (17) 0.050 (2) 0.038 (2) −0.0023 (16) 0.0089 (16) −0.0028 (19)
C29 0.048 (2) 0.070 (3) 0.048 (2) −0.007 (2) 0.0202 (19) −0.004 (2)
C30 0.057 (2) 0.064 (3) 0.058 (3) −0.006 (2) 0.023 (2) −0.008 (3)
C31 0.103 (4) 0.076 (4) 0.065 (3) −0.021 (3) 0.046 (3) −0.020 (3)
C32 0.116 (3) 0.101 (4) 0.076 (3) −0.027 (3) 0.048 (2) −0.029 (3)

Geometric parameters (Å, °)

Br1—C6 1.906 (3) Br2—C26 1.907 (3)
O1—C1 1.214 (3) O3—C21 1.209 (3)
O2—C2 1.210 (3) O4—C22 1.208 (3)
N1—C1 1.375 (3) N2—C21 1.373 (3)
N1—C8 1.411 (4) N2—C28 1.401 (3)
N1—C9 1.425 (4) N2—C29 1.467 (4)
C1—C2 1.545 (4) C21—C22 1.558 (4)
C2—C3 1.468 (4) C22—C23 1.465 (4)
C3—C4 1.370 (4) C23—C24 1.370 (4)
C3—C8 1.395 (4) C23—C28 1.391 (4)
C4—C5 1.387 (4) C24—C25 1.371 (4)
C4—H4 0.99 (3) C24—H24 0.89 (3)
C5—C6 1.366 (4) C25—C26 1.372 (4)
C5—H5 1.00 (3) C25—H25 0.92 (2)
C6—C7 1.379 (4) C26—C27 1.382 (4)
C7—C8 1.386 (4) C27—C28 1.374 (4)
C7—H7 0.95 (3) C27—H27 0.88 (2)
C9—C10 1.496 (5) C29—C30 1.503 (5)
C9—H9A 1.05 (3) C29—H29A 0.95 (3)
C9—H9B 0.87 (3) C29—H29B 0.98 (3)
C10—C11 1.536 (6) C30—C31 1.532 (5)
C10—H10B 1.03 (3) C30—H30B 1.04 (3)
C10—H10A 0.99 (3) C30—H30A 0.93 (3)
C11—C12 1.464 (6) C31—C32 1.481 (5)
C11—H11A 0.94 (4) C31—H31B 1.00 (4)
C11—H11B 1.01 (3) C31—H31A 1.01 (4)
C12—H12A 0.9600 C32—H32A 0.9600
C12—H12B 0.9600 C32—H32B 0.9600
C12—H12C 0.9600 C32—H32C 0.9600
C1—N1—C8 110.0 (3) C21—N2—C28 110.9 (2)
C1—N1—C9 124.8 (3) C21—N2—C29 123.9 (3)
C8—N1—C9 125.3 (3) C28—N2—C29 124.9 (2)
O1—C1—N1 126.3 (3) O3—C21—N2 127.2 (3)
O1—C1—C2 127.4 (3) O3—C21—C22 127.0 (3)
N1—C1—C2 106.3 (3) N2—C21—C22 105.7 (3)
O2—C2—C3 130.8 (4) O4—C22—C23 131.7 (3)
O2—C2—C1 123.8 (3) O4—C22—C21 123.5 (3)
C3—C2—C1 105.5 (3) C23—C22—C21 104.7 (3)
C4—C3—C8 121.5 (3) C24—C23—C28 120.3 (3)
C4—C3—C2 132.0 (3) C24—C23—C22 132.2 (3)
C8—C3—C2 106.5 (3) C28—C23—C22 107.4 (3)
C3—C4—C5 118.2 (4) C23—C24—C25 119.6 (3)
C3—C4—H4 120.7 (16) C23—C24—H24 115.6 (18)
C5—C4—H4 120.8 (16) C25—C24—H24 124.7 (19)
C6—C5—C4 119.1 (4) C24—C25—C26 119.0 (3)
C6—C5—H5 122.6 (15) C24—C25—H25 122.3 (15)
C4—C5—H5 118.3 (15) C26—C25—H25 118.7 (15)
C5—C6—C7 124.8 (3) C25—C26—C27 123.4 (3)
C5—C6—Br1 118.4 (3) C25—C26—Br2 119.2 (3)
C7—C6—Br1 116.8 (3) C27—C26—Br2 117.4 (3)
C6—C7—C8 115.3 (3) C28—C27—C26 116.3 (3)
C6—C7—H7 125.2 (15) C28—C27—H27 120.7 (16)
C8—C7—H7 119.5 (15) C26—C27—H27 123.0 (16)
C7—C8—C3 121.1 (3) C27—C28—C23 121.4 (3)
C7—C8—N1 127.1 (3) C27—C28—N2 127.3 (3)
C3—C8—N1 111.8 (3) C23—C28—N2 111.3 (2)
N1—C9—C10 113.9 (3) N2—C29—C30 114.5 (3)
N1—C9—H9A 110.8 (17) N2—C29—H29A 110.0 (15)
C10—C9—H9A 107.0 (17) C30—C29—H29A 111.5 (17)
N1—C9—H9B 111 (2) N2—C29—H29B 106.1 (17)
C10—C9—H9B 108 (2) C30—C29—H29B 112.8 (18)
H9A—C9—H9B 106 (3) H29A—C29—H29B 101 (2)
C9—C10—C11 110.1 (4) C29—C30—C31 110.6 (4)
C9—C10—H10B 108.8 (16) C29—C30—H30B 109.3 (18)
C11—C10—H10B 112.8 (16) C31—C30—H30B 115.0 (17)
C9—C10—H10A 109.7 (18) C29—C30—H30A 115 (2)
C11—C10—H10A 114.1 (19) C31—C30—H30A 109 (2)
H10B—C10—H10A 101 (2) H30B—C30—H30A 98 (3)
C12—C11—C10 114.3 (4) C32—C31—C30 112.8 (4)
C12—C11—H11A 91 (3) C32—C31—H31B 100 (2)
C10—C11—H11A 111 (2) C30—C31—H31B 113 (2)
C12—C11—H11B 101 (2) C32—C31—H31A 116 (2)
C10—C11—H11B 108 (2) C30—C31—H31A 107 (2)
H11A—C11—H11B 129 (3) H31B—C31—H31A 109 (3)
C11—C12—H12A 109.5 C31—C32—H32A 109.5
C11—C12—H12B 109.5 C31—C32—H32B 109.5
H12A—C12—H12B 109.5 H32A—C32—H32B 109.5
C11—C12—H12C 109.5 C31—C32—H32C 109.5
H12A—C12—H12C 109.5 H32A—C32—H32C 109.5
H12B—C12—H12C 109.5 H32B—C32—H32C 109.5
C8—N1—C1—O1 179.0 (3) C28—N2—C21—O3 178.2 (4)
C9—N1—C1—O1 0.6 (5) C29—N2—C21—O3 5.0 (6)
C8—N1—C1—C2 −1.6 (3) C28—N2—C21—C22 −0.5 (4)
C9—N1—C1—C2 180.0 (3) C29—N2—C21—C22 −173.6 (3)
O1—C1—C2—O2 0.6 (5) O3—C21—C22—O4 1.8 (6)
N1—C1—C2—O2 −178.8 (3) N2—C21—C22—O4 −179.6 (3)
O1—C1—C2—C3 −179.3 (3) O3—C21—C22—C23 −178.2 (3)
N1—C1—C2—C3 1.3 (3) N2—C21—C22—C23 0.4 (3)
O2—C2—C3—C4 0.2 (6) O4—C22—C23—C24 −2.7 (7)
C1—C2—C3—C4 −180.0 (3) C21—C22—C23—C24 177.3 (4)
O2—C2—C3—C8 179.6 (3) O4—C22—C23—C28 179.8 (4)
C1—C2—C3—C8 −0.5 (3) C21—C22—C23—C28 −0.2 (4)
C8—C3—C4—C5 0.7 (5) C28—C23—C24—C25 −0.3 (5)
C2—C3—C4—C5 180.0 (3) C22—C23—C24—C25 −177.6 (4)
C3—C4—C5—C6 −0.5 (5) C23—C24—C25—C26 −0.8 (5)
C4—C5—C6—C7 −0.2 (5) C24—C25—C26—C27 0.8 (6)
C4—C5—C6—Br1 −179.9 (2) C24—C25—C26—Br2 −179.0 (3)
C5—C6—C7—C8 0.8 (5) C25—C26—C27—C28 0.2 (5)
Br1—C6—C7—C8 −179.6 (2) Br2—C26—C27—C28 −180.0 (2)
C6—C7—C8—C3 −0.6 (4) C26—C27—C28—C23 −1.3 (5)
C6—C7—C8—N1 −179.6 (3) C26—C27—C28—N2 177.9 (3)
C4—C3—C8—C7 −0.1 (5) C24—C23—C28—C27 1.4 (5)
C2—C3—C8—C7 −179.6 (3) C22—C23—C28—C27 179.3 (3)
C4—C3—C8—N1 179.1 (3) C24—C23—C28—N2 −177.9 (3)
C2—C3—C8—N1 −0.4 (3) C22—C23—C28—N2 0.0 (4)
C1—N1—C8—C7 −179.6 (3) C21—N2—C28—C27 −179.0 (3)
C9—N1—C8—C7 −1.2 (5) C29—N2—C28—C27 −5.9 (5)
C1—N1—C8—C3 1.3 (3) C21—N2—C28—C23 0.3 (4)
C9—N1—C8—C3 179.7 (3) C29—N2—C28—C23 173.4 (3)
C1—N1—C9—C10 89.8 (4) C21—N2—C29—C30 −106.6 (4)
C8—N1—C9—C10 −88.3 (4) C28—N2—C29—C30 81.2 (4)
N1—C9—C10—C11 179.3 (3) N2—C29—C30—C31 −177.1 (3)
C9—C10—C11—C12 172.4 (4) C29—C30—C31—C32 174.8 (4)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C7—H7···O3i 0.95 (3) 2.44 (3) 3.367 (5) 165 (2)

Symmetry codes: (i) −x, −y, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CS2100).

References

  1. Bruker (2005). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  3. Goldschmidt, G. H. & Llewellyn, F. J. (1950). Acta Cryst.3, 294–305.
  4. Kopka, K., Faust, A., Keul, P., Wagner, S., Breyholz, H.-J., Holtke, C., Schober, O., Schafers, M. & Levkau, B. (2006). J. Med. Chem.49, 6704–6715. [DOI] [PubMed]
  5. Palenik, G. J., Koziol, A. E., Katritzky, A. R. & Fan, W.-Q. (1990). J. Chem. Soc. Chem. Commun. pp. 715–716.
  6. Pirrung, M. C., Pansare, S. V., Sarma, K. D., Keith, K. A. & Kern, E. R. (2005). J. Med. Chem.48, 3045–3050. [DOI] [PubMed]
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Zhou, L., Liu, Y., Zhang, W., Wei, P., Huang, C., Pei, J., Yuan, Y. & Lai, L. (2006). J. Med. Chem.49, 3440–3443. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808042098/cs2100sup1.cif

e-65-0o136-sup1.cif (22KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808042098/cs2100Isup2.hkl

e-65-0o136-Isup2.hkl (248.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES