Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Dec 17;65(Pt 1):o146. doi: 10.1107/S1600536808042001

3-[3-(3-Fluoro­phen­yl)-1,2,4-oxadiazol-5-yl]propionic acid

Suseanne K M Santos a, Ricardo A W Neves Filho a, Adailton J Bortoluzzi b, Rajendra M Srivastava a,*
PMCID: PMC2968061  PMID: 21581604

Abstract

In the title compound, C11H9FN2O3, the benzene ring is almost coplanar with the heterocyclic ring, making a dihedral angle of 14.0 (1)°. The plane of the carboxyl group is rotated by 14.7 (3)° with respect to the 1,2,4-oxadiazole ring plane. The aliphatic chain exhibits a standard zigzag arrangement. Two inter­molecular O—H⋯O hydrogen bonds between the carboxyl groups related by an inversion centre promote a dimeric structure formation. The dimers are stacked along the crystallographic a axis.

Related literature

For general background, see: Gallardo et al. (2008); Jakopin & Dolenc (2008). For related structures, see: Wang et al. (2006, 2007); Yan, Xing et al. (2006); Yan et al. (2006a ,b ). For the method of preparation, see: Sindkhedkar et al. (2008); Srivastava & Seabra (1997).graphic file with name e-65-0o146-scheme1.jpg

Experimental

Crystal data

  • C11H9FN2O3

  • M r = 236.20

  • Triclinic, Inline graphic

  • a = 5.055 (1) Å

  • b = 5.905 (1) Å

  • c = 17.967 (1) Å

  • α = 85.769 (5)°

  • β = 87.965 (7)°

  • γ = 81.252 (7)°

  • V = 528.47 (14) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 293 (2) K

  • 0.50 × 0.33 × 0.07 mm

Data collection

  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: none

  • 2136 measured reflections

  • 2066 independent reflections

  • 1557 reflections with I > 2σ(I)

  • R int = 0.010

  • 3 standard reflections every 200 reflections intensity decay: 1%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.039

  • wR(F 2) = 0.112

  • S = 1.06

  • 2066 reflections

  • 158 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.21 e Å−3

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software; data reduction: HELENA (Spek, 1996); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808042001/is2367sup1.cif

e-65-0o146-sup1.cif (15.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808042001/is2367Isup2.hkl

e-65-0o146-Isup2.hkl (99.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O10—H10⋯O9i 0.97 (3) 1.68 (3) 2.650 (2) 179 (3)

Symmetry code: (i) Inline graphic.

Acknowledgments

The authors are grateful to the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) for financial assistance. SKMS thanks the Programa Institucional de Bolsas de Iniciação Científica (PIBIC/CNPq) for an Undergraduate fellowship.

supplementary crystallographic information

Comment

1,2,4-Oxadiazoles are well known compounds, which exhibit a large number of biological activities (Jakopin & Dolenc, 2008). Recently, the use of this heterocycle as core for luminescent liquid crystals has also been described (Gallardo et al., 2008).

In the title compound (Fig. 1), the bond lengths and angles are in agreement with the values previously reported for 1,2,4-oxadiazole-containing molecules (Wang et al., 2006, 2007; Yan, Xing et al., 2006; Yan et al., 2006a,b). The torsion angle N2—C3—C11—C16 between the benzene ring attached to C-3 of the 1,2,4-oxadiazole system is -13.6 (2)°, thus, both rings are almost coplanar. The C-5 side-chain containing a carboxylic acid group shows a zigzag arrangement, having the torsion angle C5—C6—C7—C8 of -179.4 (1)°. In addition, the plane of the carboxylic group is also rotated by 14.7 (3)° with respect to the mean plane of the 1,2,4-oxadiazole five-membered ring, but in opposite direction of deviation of the fluoro-phenyl ring. This makes the molecular structure to be slightly twisted. Carboxylic groups are involved in centrosymmetric intermolecular hydrogen-bonding forming a dimeric structure (Fig. 2). The dimmers are perfectly stacked along the crystallographic a axis (Fig. 3).

Experimental

The title compound was synthesized following the procedure reported earlier for the analogous compounds (Srivastava & Seabra, 1997; Sindkhedkar et al., 2008). A mixture of 3-fluorbenzamidoxime (2.0 mmol) and succinic anhydride (2.2 mmol) was heated in a domestic microwave oven for 10 min. The crude material was purified by column chromatography. Crystallization of pure material from chloroform, from which a suitable crystal was chosen for the X-ray crystallographic experiment.

Refinement

H atoms attached to C atoms were added at their calculated positions and included in the structure factors calculations, with C—H = 0.93 (aromatic) and 0.97 Å (methylene), and with Uiso(H) = 1.2Ueq(C). The H atom of carboxylic acid was located in a difference Fourier map and treated as a free atom.

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I) with labeling scheme. Displacement ellipsoids are shown at the 40% probability level.

Fig. 2.

Fig. 2.

Dimeric strucuture formed by hydrogen bonding.

Fig. 3.

Fig. 3.

Molecules of (I) stacked along the a axis.

Crystal data

C11H9FN2O3 Z = 2
Mr = 236.20 F(000) = 244
Triclinic, P1 Dx = 1.484 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71069 Å
a = 5.055 (1) Å Cell parameters from 25 reflections
b = 5.905 (1) Å θ = 5.0–18.8°
c = 17.967 (1) Å µ = 0.12 mm1
α = 85.769 (5)° T = 293 K
β = 87.965 (7)° Irregular plate, colorless
γ = 81.252 (7)° 0.50 × 0.33 × 0.07 mm
V = 528.47 (14) Å3

Data collection

Enraf–Nonius CAD-4 diffractometer Rint = 0.010
Radiation source: fine-focus sealed tube θmax = 26.0°, θmin = 1.1°
graphite h = −6→6
ω–2θ scans k = −7→7
2136 measured reflections l = −22→0
2066 independent reflections 3 standard reflections every 200 reflections
1557 reflections with I > 2σ(I) intensity decay: 1%

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.112 H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0583P)2 + 0.0868P] where P = (Fo2 + 2Fc2)/3
2066 reflections (Δ/σ)max < 0.001
158 parameters Δρmax = 0.21 e Å3
0 restraints Δρmin = −0.21 e Å3

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C3 0.1073 (3) −0.0359 (3) 0.24108 (9) 0.0403 (4)
C5 −0.1973 (3) 0.0022 (3) 0.32245 (9) 0.0412 (4)
C6 −0.4105 (3) 0.0731 (3) 0.37879 (10) 0.0463 (4)
H6A −0.3429 0.0278 0.4284 0.056*
H6B −0.5616 −0.0064 0.3722 0.056*
C7 −0.5043 (3) 0.3291 (3) 0.37270 (10) 0.0476 (4)
H7A −0.3529 0.4086 0.3788 0.057*
H7B −0.5738 0.3741 0.3233 0.057*
C8 −0.7169 (3) 0.4009 (3) 0.42998 (9) 0.0422 (4)
C11 0.3022 (3) 0.0236 (3) 0.18257 (9) 0.0415 (4)
C12 0.2778 (4) 0.2461 (3) 0.15009 (10) 0.0522 (4)
H12 0.1426 0.3584 0.1660 0.063*
C13 0.4575 (4) 0.2996 (4) 0.09349 (11) 0.0618 (5)
H13 0.4413 0.4485 0.0715 0.074*
C14 0.6588 (4) 0.1352 (4) 0.06958 (11) 0.0594 (5)
H14 0.7785 0.1708 0.0316 0.071*
C15 0.6783 (3) −0.0823 (3) 0.10322 (10) 0.0534 (5)
C16 0.5063 (3) −0.1432 (3) 0.15924 (10) 0.0483 (4)
H16 0.5256 −0.2923 0.1811 0.058*
N2 0.0849 (3) −0.2473 (3) 0.26222 (9) 0.0552 (4)
N4 −0.0667 (3) 0.1270 (2) 0.27700 (8) 0.0437 (3)
O1 −0.1230 (2) −0.2237 (2) 0.31750 (7) 0.0555 (4)
O9 −0.8599 (2) 0.2685 (2) 0.45969 (7) 0.0547 (3)
O10 −0.7395 (3) 0.6168 (2) 0.44456 (8) 0.0551 (3)
F17 0.8776 (2) −0.2448 (2) 0.07982 (7) 0.0822 (4)
H10 −0.885 (6) 0.660 (5) 0.4800 (16) 0.102 (8)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C3 0.0353 (8) 0.0424 (8) 0.0424 (8) −0.0037 (6) 0.0030 (7) −0.0040 (7)
C5 0.0372 (8) 0.0418 (8) 0.0440 (9) −0.0059 (6) 0.0037 (7) −0.0008 (7)
C6 0.0424 (9) 0.0479 (9) 0.0476 (9) −0.0091 (7) 0.0116 (7) 0.0011 (7)
C7 0.0432 (9) 0.0465 (9) 0.0510 (10) −0.0062 (7) 0.0137 (7) 0.0019 (7)
C8 0.0359 (8) 0.0454 (9) 0.0442 (9) −0.0060 (7) 0.0050 (7) 0.0014 (7)
C11 0.0373 (8) 0.0482 (9) 0.0402 (8) −0.0093 (7) 0.0040 (6) −0.0076 (7)
C12 0.0533 (10) 0.0504 (10) 0.0511 (10) −0.0047 (8) 0.0130 (8) −0.0059 (8)
C13 0.0734 (13) 0.0582 (12) 0.0543 (11) −0.0167 (10) 0.0160 (9) −0.0023 (9)
C14 0.0573 (11) 0.0746 (14) 0.0489 (10) −0.0210 (10) 0.0186 (9) −0.0092 (9)
C15 0.0414 (9) 0.0669 (12) 0.0518 (10) −0.0044 (8) 0.0114 (8) −0.0165 (9)
C16 0.0445 (9) 0.0497 (10) 0.0503 (10) −0.0057 (7) 0.0045 (8) −0.0070 (7)
N2 0.0529 (9) 0.0452 (8) 0.0633 (10) −0.0008 (6) 0.0206 (7) 0.0004 (7)
N4 0.0412 (7) 0.0429 (7) 0.0468 (8) −0.0076 (6) 0.0108 (6) −0.0045 (6)
O1 0.0560 (7) 0.0418 (7) 0.0646 (8) −0.0033 (5) 0.0208 (6) 0.0038 (5)
O9 0.0488 (7) 0.0519 (7) 0.0636 (8) −0.0129 (5) 0.0229 (6) −0.0052 (6)
O10 0.0517 (7) 0.0471 (7) 0.0665 (8) −0.0103 (5) 0.0198 (6) −0.0077 (6)
F17 0.0635 (7) 0.0919 (10) 0.0841 (9) 0.0081 (6) 0.0308 (6) −0.0145 (7)

Geometric parameters (Å, °)

C3—N2 1.298 (2) C11—C12 1.387 (2)
C3—N4 1.382 (2) C11—C16 1.389 (2)
C3—C11 1.475 (2) C12—C13 1.390 (3)
C5—N4 1.291 (2) C12—H12 0.9300
C5—O1 1.338 (2) C13—C14 1.376 (3)
C5—C6 1.486 (2) C13—H13 0.9300
C6—C7 1.511 (2) C14—C15 1.370 (3)
C6—H6A 0.9700 C14—H14 0.9300
C6—H6B 0.9700 C15—F17 1.359 (2)
C7—C8 1.497 (2) C15—C16 1.370 (2)
C7—H7A 0.9700 C16—H16 0.9300
C7—H7B 0.9700 N2—O1 1.4183 (19)
C8—O9 1.2252 (19) O10—H10 0.97 (3)
C8—O10 1.308 (2)
N2—C3—N4 114.80 (14) C12—C11—C3 119.61 (15)
N2—C3—C11 122.14 (14) C16—C11—C3 120.18 (15)
N4—C3—C11 123.06 (14) C11—C12—C13 119.36 (17)
N4—C5—O1 113.59 (14) C11—C12—H12 120.3
N4—C5—C6 129.61 (15) C13—C12—H12 120.3
O1—C5—C6 116.79 (13) C14—C13—C12 120.87 (18)
C5—C6—C7 112.30 (13) C14—C13—H13 119.6
C5—C6—H6A 109.1 C12—C13—H13 119.6
C7—C6—H6A 109.1 C15—C14—C13 118.25 (17)
C5—C6—H6B 109.1 C15—C14—H14 120.9
C7—C6—H6B 109.1 C13—C14—H14 120.9
H6A—C6—H6B 107.9 F17—C15—C14 118.33 (16)
C8—C7—C6 112.31 (14) F17—C15—C16 118.68 (18)
C8—C7—H7A 109.1 C14—C15—C16 122.99 (17)
C6—C7—H7A 109.1 C15—C16—C11 118.33 (17)
C8—C7—H7B 109.1 C15—C16—H16 120.8
C6—C7—H7B 109.1 C11—C16—H16 120.8
H7A—C7—H7B 107.9 C3—N2—O1 102.97 (13)
O9—C8—O10 123.07 (15) C5—N4—C3 102.40 (13)
O9—C8—C7 122.54 (15) C5—O1—N2 106.23 (12)
O10—C8—C7 114.38 (14) C8—O10—H10 112.6 (16)
C12—C11—C16 120.20 (15)
N4—C5—C6—C7 8.6 (3) C13—C14—C15—C16 0.2 (3)
O1—C5—C6—C7 −172.42 (15) F17—C15—C16—C11 −179.68 (16)
C5—C6—C7—C8 −179.36 (14) C14—C15—C16—C11 0.3 (3)
C6—C7—C8—O9 −23.4 (2) C12—C11—C16—C15 −0.8 (3)
C6—C7—C8—O10 157.66 (15) C3—C11—C16—C15 178.08 (15)
N2—C3—C11—C12 165.28 (17) N4—C3—N2—O1 −0.10 (19)
N4—C3—C11—C12 −14.0 (2) C11—C3—N2—O1 −179.48 (14)
N2—C3—C11—C16 −13.6 (2) O1—C5—N4—C3 −0.79 (18)
N4—C3—C11—C16 167.08 (15) C6—C5—N4—C3 178.25 (16)
C16—C11—C12—C13 0.7 (3) N2—C3—N4—C5 0.54 (19)
C3—C11—C12—C13 −178.15 (17) C11—C3—N4—C5 179.91 (15)
C11—C12—C13—C14 −0.2 (3) N4—C5—O1—N2 0.77 (19)
C12—C13—C14—C15 −0.3 (3) C6—C5—O1—N2 −178.40 (14)
C13—C14—C15—F17 −179.80 (17) C3—N2—O1—C5 −0.37 (17)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O10—H10···O9i 0.97 (3) 1.68 (3) 2.650 (2) 179 (3)

Symmetry codes: (i) −x−2, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS2367).

References

  1. Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst.32, 115–119.
  2. Enraf–Nonius (1989). CAD-4 Software Enraf–Nonius, Delft, The Netherlands.
  3. Gallardo, H., Cristiano, R., Vieira, A. A., Neves Filho, R. A. W. & Srivastava, R. M. (2008). Synthesis, pp. 605–609.
  4. Jakopin, Z. & Dolenc, M. S. (2008). Curr. Org. Chem.12, 850–898.
  5. Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst.39, 453–457.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  7. Sindkhedkar, M. D., Desai, V. N., Loriya, R. M., Patel, M. V., Trivedi, B. K., Bora, R. O., Diwakar, S. D., Jadhav, G. R. & Pawar, S. S. (2008). PCT Int. Patent Appl. 123pp.
  8. Spek, A. L. (1996). HELENA University of Utrecht, The Netherlands.
  9. Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
  10. Srivastava, R. M. & Seabra, G. M. (1997). J. Braz. Chem. Soc.8, 397–405.
  11. Wang, P., Li, H., Kang, S. & Wang, H. (2007). Acta Cryst. E63, o4411.
  12. Wang, H.-B., Liu, Z.-Q., Wang, H.-B. & Yan, X.-C. (2006). Acta Cryst. E62, o4715–o4716.
  13. Yan, X.-C., Wang, H.-B. & Liu, Z.-Q. (2006a). Acta Cryst. E62, o3007–o3008.
  14. Yan, X.-C., Wang, H.-B. & Liu, Z.-Q. (2006b). Acta Cryst. E62, o1302–o1303.
  15. Yan, X.-C., Xing, Z.-T., Liu, Z.-Q. & Wang, H.-B. (2006). Acta Cryst. E62, o4640–o4641.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808042001/is2367sup1.cif

e-65-0o146-sup1.cif (15.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808042001/is2367Isup2.hkl

e-65-0o146-Isup2.hkl (99.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES