Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Dec 17;65(Pt 1):o151. doi: 10.1107/S1600536808042359

Propyl 2-(5-iodo-3-methyl­sulfinyl-1-benzofuran-2-yl)acetate

Hong Dae Choi a, Pil Ja Seo a, Byeng Wha Son b, Uk Lee b,*
PMCID: PMC2968065  PMID: 21581609

Abstract

In the title compound, C14H15IO4S, the O atom and the methyl group of the methyl­sulfinyl substituent lie on opposite sides of the plane of the benzofuran ring system. The crystal structure is stabilized by inter­molecular C—H⋯π inter­actions between an H atom of the propyl methyl­ene group closest to the carboxyl­ate O atom and the benzene ring of a neighbouring mol­ecule, and between an H atom of the outer propyl methyl­ene group and the furan ring of a neighbouring mol­ecule, respectively. Additionally, the crystal structure exhibits inter­molecular C—H⋯O hydrogen bonds.

Related literature

For the synthesis and crystal structures of similar alkyl 2-(5-iodo-3-methyl­sulfinyl-1-benzofuran-2-yl)acetate derivatives. see: Choi et al. (2007, 2008).graphic file with name e-65-0o151-scheme1.jpg

Experimental

Crystal data

  • C14H15IO4S

  • M r = 406.22

  • Triclinic, Inline graphic

  • a = 8.5468 (4) Å

  • b = 10.0329 (5) Å

  • c = 10.3239 (5) Å

  • α = 72.442 (1)°

  • β = 81.345 (1)°

  • γ = 65.088 (1)°

  • V = 765.21 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.24 mm−1

  • T = 293 (2) K

  • 0.30 × 0.20 × 0.10 mm

Data collection

  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1999) T min = 0.583, T max = 0.787

  • 6182 measured reflections

  • 2982 independent reflections

  • 2778 reflections with I > 2σ(I)

  • R int = 0.016

Refinement

  • R[F 2 > 2σ(F 2)] = 0.029

  • wR(F 2) = 0.069

  • S = 1.18

  • 2982 reflections

  • 183 parameters

  • H-atom parameters constrained

  • Δρmax = 0.52 e Å−3

  • Δρmin = −0.56 e Å−3

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808042359/sj2566sup1.cif

e-65-0o151-sup1.cif (18.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808042359/sj2566Isup2.hkl

e-65-0o151-Isup2.hkl (146.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C11—H11BCg1i 0.97 3.12 3.814 (4) 130
C12—H12BCg2ii 0.97 2.99 3.929 (3) 162
C3—H3⋯O4iii 0.93 2.60 3.468 (4) 157
C9—H9B⋯O4iv 0.97 2.40 3.356 (4) 167

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic. Cg1 and Cg2 are the centroids of the C2–C7 benzene ring and the C1/C2/C7/O1/C8 furan ring, respectively.

supplementary crystallographic information

Comment

This work is related to our previous communications on the synthesis and structure of alkyl 2-(5-iodo-3-methylsulfinyl-1-benzofuran-2-yl)acetate analogues, viz. ethyl 2-(5-iodo-3-methylsulfinyl-1-benzofuran-2-yl)acetate (Choi et al., 2007) and isopropyl 2-(5-iodo-3-methylsulfinyl-1-benzofuran-2-yl)acetate (Choi et al., 2008). Here we report the crystal structure of the title compound, propyl 2-(5-iodo-3-methylsulfinyl-1-benzofuran-2-yl)acetate (Fig. 1).

The benzofuran unit is essentially planar, with a mean deviation of 0.012 (2) Å from the least-squares plane defined by the nine constituent atoms. The molecular packing (Fig. 2) is stabilized by intermolecular C—H···π interactions within each stack of molecules; one between the hydrogen of 11–methylene group and the benzene ring of the benzofuran unit, with a C11—H11B···Cg1i separation of 3.12 Å, and a second between the hydrogen of 12-methylene group and the furan ring of the benzofuran unit, with a C12—H12B···Cg2i with a separation of 2.99 Å (Table 1 and Fig. 2; Cg1 and Cg2 are the centroids of the C2–C7 benzene ring and the C1/C2/C7/O1/C8 furan ring, respectively, symmetry code as in Fig. 2). In addition, intermolecular C—H···O hydrogen bonds in the structure are observed (Table 1).

Experimental

77% 3-chloroperoxybenzoic acid (173 mg, 0.77 mmol) was added in small portions to a stirred solution of propyl 2-(5-iodo-3-methylsulfanyl-1-benzofuran-2-yl)acetate (273 mg, 0.7 mmol) in dichloromethane (30 ml) at 273 K. After stirring for 3 h at room temperature, the mixture was washed with saturated sodium bicarbonate solution and the organic layer was separated, dried over magnesium sulfate, filtered and concentrated in vacuum. The residue was purified by column chromatography (hexane-ethyl acetate, 1:2 v/v) to afford the title compound as a colorless solid [yield 80%, m.p. 412-413 K; Rf = 0.58 (hexane-ethyl acetate, 1;2 v/v)]. Single crystals suitable for X-ray diffraction were prepared by evaporation of a solution of the title compound in acetone at room temperature. Spectroscopic analysis: 1H NMR (CDCl3, 400 MHz) δ 0.93 (t, J = 7.36 Hz, 3H), 1.64-1.72 (m, 2H), 3.07 (s, 3H), 4.02 (s, 2H), 4.11 (t, J = 6.60 Hz, 2H), 7.29 (d, J = 8.76 Hz, 1H), 7.66 (dd, J = 8.80 Hz and J = 1.84 Hz, 1H), 8.28 (d, J = 1.48 Hz, 1H); EI-MS 406 [M+].

Refinement

All H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93 Å for the aryl, 0.97 Å for the methylene, and 0.96 Å for the methyl H atoms. Uiso(H) = 1.2Ueq(C) for the aryl and methylene H atoms, and 1.5Ueq(C) for methyl H atoms.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, showing displacement ellipsoids drawn at the 30% probability level.

Fig. 2.

Fig. 2.

C—H···π interactions (dotted lines) in the title compound. Cg denotes the ring centroid.[Symmetry code: (i) x, y-1, z; (ii) x, y+1, z.]

Crystal data

C14H15IO4S Z = 2
Mr = 406.22 F(000) = 400
Triclinic, P1 Dx = 1.763 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 8.5468 (4) Å Cell parameters from 4625 reflections
b = 10.0329 (5) Å θ = 2.3–28.3°
c = 10.3239 (5) Å µ = 2.24 mm1
α = 72.442 (1)° T = 293 K
β = 81.345 (1)° Plate, colorless
γ = 65.088 (1)° 0.30 × 0.20 × 0.10 mm
V = 765.21 (6) Å3

Data collection

Bruker SMART CCD diffractometer 2982 independent reflections
Radiation source: fine-focus sealed tube 2778 reflections with I > 2σ(I)
graphite Rint = 0.016
Detector resolution: 10.0 pixels mm-1 θmax = 26.0°, θmin = 2.3°
φ and ω scans h = −10→10
Absorption correction: multi-scan (SADABS; Sheldrick, 1999) k = −12→12
Tmin = 0.583, Tmax = 0.787 l = −12→12
6182 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029 Hydrogen site location: difference Fourier map
wR(F2) = 0.069 H-atom parameters constrained
S = 1.18 w = 1/[σ2(Fo2) + (0.0293P)2 + 0.5734P] where P = (Fo2 + 2Fc2)/3
2982 reflections (Δ/σ)max = 0.001
183 parameters Δρmax = 0.52 e Å3
0 restraints Δρmin = −0.56 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
I 0.69366 (3) 0.79269 (3) 0.61486 (2) 0.04832 (10)
S 0.26183 (10) 0.40380 (10) 0.96397 (8) 0.03932 (18)
O1 0.1660 (3) 0.5368 (2) 0.5730 (2) 0.0350 (4)
O2 0.0455 (3) 0.1416 (3) 0.7355 (3) 0.0530 (6)
O3 0.2911 (3) 0.1379 (3) 0.7896 (3) 0.0567 (7)
O4 0.2582 (3) 0.5257 (3) 1.0206 (2) 0.0529 (6)
C1 0.2539 (4) 0.4770 (3) 0.7857 (3) 0.0337 (6)
C2 0.3414 (4) 0.5677 (3) 0.6976 (3) 0.0303 (6)
C3 0.4622 (4) 0.6215 (3) 0.7127 (3) 0.0335 (6)
H3 0.5072 0.5992 0.7969 0.040*
C4 0.5121 (4) 0.7091 (3) 0.5973 (3) 0.0340 (6)
C5 0.4466 (4) 0.7459 (3) 0.4690 (3) 0.0387 (7)
H5 0.4825 0.8069 0.3943 0.046*
C6 0.3287 (4) 0.6913 (3) 0.4533 (3) 0.0368 (7)
H6 0.2844 0.7134 0.3689 0.044*
C7 0.2796 (4) 0.6029 (3) 0.5682 (3) 0.0322 (6)
C8 0.1529 (4) 0.4619 (3) 0.7075 (3) 0.0330 (6)
C9 0.0405 (4) 0.3755 (3) 0.7359 (3) 0.0367 (7)
H9A −0.0360 0.4135 0.6606 0.044*
H9B −0.0303 0.3929 0.8168 0.044*
C10 0.1438 (4) 0.2060 (4) 0.7564 (3) 0.0396 (7)
C11 0.1272 (5) −0.0221 (4) 0.7496 (6) 0.0702 (13)
H11A 0.1879 −0.0747 0.8343 0.084*
H11B 0.2094 −0.0435 0.6752 0.084*
C12 −0.0126 (6) −0.0740 (5) 0.7479 (5) 0.0683 (12)
H12A −0.0746 −0.0170 0.6641 0.082*
H12B 0.0396 −0.1808 0.7486 0.082*
C13 −0.1370 (9) −0.0548 (7) 0.8641 (6) 0.102 (2)
H13A −0.0787 −0.1189 0.9471 0.154*
H13B −0.2278 −0.0829 0.8536 0.154*
H13C −0.1850 0.0497 0.8670 0.154*
C14 0.4798 (5) 0.2651 (4) 0.9739 (4) 0.0539 (9)
H14A 0.5572 0.3159 0.9444 0.081*
H14B 0.4958 0.2005 0.9166 0.081*
H14C 0.5031 0.2045 1.0661 0.081*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
I 0.04655 (14) 0.04768 (14) 0.05934 (16) −0.02881 (11) −0.00540 (10) −0.00948 (10)
S 0.0427 (4) 0.0487 (4) 0.0301 (4) −0.0235 (4) −0.0015 (3) −0.0075 (3)
O1 0.0358 (11) 0.0404 (11) 0.0329 (11) −0.0184 (9) −0.0071 (8) −0.0077 (9)
O2 0.0399 (12) 0.0362 (12) 0.0874 (19) −0.0165 (10) −0.0083 (12) −0.0177 (12)
O3 0.0393 (13) 0.0466 (14) 0.0806 (19) −0.0156 (11) −0.0146 (12) −0.0079 (13)
O4 0.0619 (16) 0.0638 (16) 0.0409 (13) −0.0264 (13) −0.0003 (11) −0.0234 (12)
C1 0.0349 (15) 0.0350 (15) 0.0336 (15) −0.0152 (13) −0.0026 (12) −0.0098 (12)
C2 0.0314 (14) 0.0304 (14) 0.0297 (14) −0.0112 (12) −0.0026 (11) −0.0099 (11)
C3 0.0360 (15) 0.0335 (15) 0.0339 (16) −0.0142 (12) −0.0052 (12) −0.0104 (12)
C4 0.0316 (15) 0.0311 (14) 0.0419 (16) −0.0131 (12) −0.0016 (12) −0.0119 (13)
C5 0.0400 (17) 0.0335 (15) 0.0377 (16) −0.0138 (13) 0.0009 (13) −0.0049 (13)
C6 0.0392 (16) 0.0395 (16) 0.0301 (15) −0.0150 (13) −0.0048 (12) −0.0062 (13)
C7 0.0299 (14) 0.0311 (14) 0.0378 (15) −0.0111 (12) −0.0053 (12) −0.0118 (12)
C8 0.0339 (15) 0.0320 (15) 0.0335 (15) −0.0142 (12) −0.0027 (12) −0.0070 (12)
C9 0.0343 (15) 0.0412 (16) 0.0410 (17) −0.0188 (13) −0.0023 (13) −0.0134 (13)
C10 0.0397 (17) 0.0422 (17) 0.0403 (17) −0.0220 (14) 0.0007 (13) −0.0082 (14)
C11 0.051 (2) 0.038 (2) 0.122 (4) −0.0153 (17) −0.001 (2) −0.027 (2)
C12 0.063 (3) 0.043 (2) 0.105 (4) −0.0231 (19) −0.004 (2) −0.026 (2)
C13 0.124 (5) 0.100 (4) 0.111 (5) −0.078 (4) 0.044 (4) −0.040 (4)
C14 0.051 (2) 0.055 (2) 0.049 (2) −0.0147 (17) −0.0128 (16) −0.0084 (17)

Geometric parameters (Å, °)

I—C4 2.102 (3) C6—C7 1.379 (4)
S—O4 1.494 (3) C6—H6 0.9300
S—C1 1.764 (3) C8—C9 1.491 (4)
S—C14 1.790 (4) C9—C10 1.513 (4)
O1—C7 1.375 (3) C9—H9A 0.9700
O1—C8 1.378 (3) C9—H9B 0.9700
O2—C10 1.329 (4) C11—C12 1.495 (6)
O2—C11 1.458 (4) C11—H11A 0.9700
O3—C10 1.197 (4) C11—H11B 0.9700
C1—C8 1.347 (4) C12—C13 1.480 (7)
C1—C2 1.443 (4) C12—H12A 0.9700
C2—C3 1.397 (4) C12—H12B 0.9700
C2—C7 1.399 (4) C13—H13A 0.9600
C3—C4 1.380 (4) C13—H13B 0.9600
C3—H3 0.9300 C13—H13C 0.9600
C4—C5 1.400 (4) C14—H14A 0.9600
C5—C6 1.381 (4) C14—H14B 0.9600
C5—H5 0.9300 C14—H14C 0.9600
O4—S—C1 106.92 (14) C10—C9—H9A 109.1
O4—S—C14 106.66 (17) C8—C9—H9B 109.1
C1—S—C14 98.06 (16) C10—C9—H9B 109.1
C7—O1—C8 106.0 (2) H9A—C9—H9B 107.9
C10—O2—C11 116.8 (3) O3—C10—O2 124.3 (3)
C8—C1—C2 107.3 (3) O3—C10—C9 125.7 (3)
C8—C1—S 123.9 (2) O2—C10—C9 110.0 (3)
C2—C1—S 128.7 (2) O2—C11—C12 107.4 (3)
C3—C2—C7 119.1 (3) O2—C11—H11A 110.2
C3—C2—C1 136.3 (3) C12—C11—H11A 110.2
C7—C2—C1 104.6 (2) O2—C11—H11B 110.2
C4—C3—C2 117.2 (3) C12—C11—H11B 110.2
C4—C3—H3 121.4 H11A—C11—H11B 108.5
C2—C3—H3 121.4 C13—C12—C11 113.5 (4)
C3—C4—C5 123.1 (3) C13—C12—H12A 108.9
C3—C4—I 118.6 (2) C11—C12—H12A 108.9
C5—C4—I 118.3 (2) C13—C12—H12B 108.9
C6—C5—C4 119.9 (3) C11—C12—H12B 108.9
C6—C5—H5 120.1 H12A—C12—H12B 107.7
C4—C5—H5 120.1 C12—C13—H13A 109.5
C7—C6—C5 117.2 (3) C12—C13—H13B 109.5
C7—C6—H6 121.4 H13A—C13—H13B 109.5
C5—C6—H6 121.4 C12—C13—H13C 109.5
O1—C7—C6 125.8 (3) H13A—C13—H13C 109.5
O1—C7—C2 110.7 (3) H13B—C13—H13C 109.5
C6—C7—C2 123.6 (3) S—C14—H14A 109.5
C1—C8—O1 111.4 (3) S—C14—H14B 109.5
C1—C8—C9 133.3 (3) H14A—C14—H14B 109.5
O1—C8—C9 115.2 (2) S—C14—H14C 109.5
C8—C9—C10 112.3 (2) H14A—C14—H14C 109.5
C8—C9—H9A 109.1 H14B—C14—H14C 109.5
O4—S—C1—C8 −135.7 (3) C3—C2—C7—O1 178.3 (2)
C14—S—C1—C8 114.1 (3) C1—C2—C7—O1 −1.5 (3)
O4—S—C1—C2 40.8 (3) C3—C2—C7—C6 −1.4 (4)
C14—S—C1—C2 −69.4 (3) C1—C2—C7—C6 178.8 (3)
C8—C1—C2—C3 −178.7 (3) C2—C1—C8—O1 −0.3 (3)
S—C1—C2—C3 4.4 (5) S—C1—C8—O1 176.8 (2)
C8—C1—C2—C7 1.0 (3) C2—C1—C8—C9 175.8 (3)
S—C1—C2—C7 −175.9 (2) S—C1—C8—C9 −7.1 (5)
C7—C2—C3—C4 0.8 (4) C7—O1—C8—C1 −0.6 (3)
C1—C2—C3—C4 −179.4 (3) C7—O1—C8—C9 −177.5 (2)
C2—C3—C4—C5 0.4 (4) C1—C8—C9—C10 −74.2 (4)
C2—C3—C4—I −180.0 (2) O1—C8—C9—C10 101.8 (3)
C3—C4—C5—C6 −1.2 (5) C11—O2—C10—O3 −2.4 (5)
I—C4—C5—C6 179.2 (2) C11—O2—C10—C9 179.2 (3)
C4—C5—C6—C7 0.7 (4) C8—C9—C10—O3 22.6 (5)
C8—O1—C7—C6 −179.0 (3) C8—C9—C10—O2 −159.0 (3)
C8—O1—C7—C2 1.3 (3) C10—O2—C11—C12 169.5 (4)
C5—C6—C7—O1 −179.1 (3) O2—C11—C12—C13 −63.9 (6)
C5—C6—C7—C2 0.6 (4)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C11—H11B···Cg1i 0.97 3.12 3.814 (4) 130
C12—H12B···Cg2ii 0.97 2.99 3.929 (3) 162
C3—H3···O4iii 0.93 2.60 3.468 (4) 157
C9—H9B···O4iv 0.97 2.40 3.356 (4) 167

Symmetry codes: (i) x, y−1, z; (ii) x, y+1, z; (iii) −x+1, −y+1, −z+2; (iv) −x, −y+1, −z+2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SJ2566).

References

  1. Brandenburg, K. (1998). DIAMOND Crystal Impact GbR, Bonn, Germany.
  2. Bruker (2001). SAINT and SMART Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2007). Acta Cryst. E63, o4081.
  4. Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2008). Acta Cryst. E64, o2384. [DOI] [PMC free article] [PubMed]
  5. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  6. Sheldrick, G. M. (1999). SADABS University of Göttingen, Germany.
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808042359/sj2566sup1.cif

e-65-0o151-sup1.cif (18.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808042359/sj2566Isup2.hkl

e-65-0o151-Isup2.hkl (146.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES