Abstract
The title compound, C20H12N2S2, was prepared by the reaction of o-phthalic acid and 2-aminothiophenol under microwave irradation. The phenyl ring, A, and the benzothiazolyl rings, B and C, are planar; the dihedral angles are A/B = 19.9 (11), A/C = 87.8 (3) and B/C = 84.4 (4)°. Weak intermolecular C—H⋯N hydrogen bonds link the molecule, forming zigzag chains parallel to the c axis.
Related literature
For details of the synthesis and applications of benzothiazoles, see: Chakraborti et al. (2004 ▶); Seijas et al. (2007 ▶). For the use of microwave-assisted organic synthesis, see: Kappe & Stadler (2005 ▶). For bond-length data, see: Allen et al. (1987 ▶).
Experimental
Crystal data
C20H12N2S2
M r = 344.44
Monoclinic,
a = 10.748 (2) Å
b = 19.148 (4) Å
c = 8.1840 (16) Å
β = 100.77 (3)°
V = 1654.6 (6) Å3
Z = 4
Mo Kα radiation
μ = 0.32 mm−1
T = 293 (2) K
0.30 × 0.20 × 0.10 mm
Data collection
Enraf–Nonius CAD-4 diffractometer
Absorption correction: ψ scan (North et al., 1968 ▶) T min = 0.909, T max = 0.968
3000 measured reflections
3000 independent reflections
1640 reflections with I > 2σ(I)
3 standard reflections every 200 reflections intensity decay: 9%
Refinement
R[F 2 > 2σ(F 2)] = 0.069
wR(F 2) = 0.206
S = 1.10
3000 reflections
217 parameters
H-atom parameters constrained
Δρmax = 0.31 e Å−3
Δρmin = −0.32 e Å−3
Data collection: CAD-4 Software (Enraf–Nonius, 1989 ▶); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995 ▶); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 ▶); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 ▶); molecular graphics: ORTEPIII (Burnett & Johnson, 1996 ▶), ORTEP-3 for Windows (Farrugia, 1997 ▶) and PLATON (Spek, 2003 ▶); software used to prepare material for publication: SHELXL97.
Supplementary Material
Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808042542/dn2416sup1.cif
Structure factors: contains datablocks I. DOI: 10.1107/S1600536808042542/dn2416Isup2.hkl
Additional supplementary materials: crystallographic information; 3D view; checkCIF report
Table 1. Hydrogen-bond geometry (Å, °).
| D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A |
|---|---|---|---|---|
| C12—H12⋯N2i | 0.93 | 2.46 | 3.370 (7) | 165 |
Symmetry code: (i)
.
Acknowledgments
The authors thank the Center of Testing and Analysis, Nanjing University, for support.
supplementary crystallographic information
Comment
Benzothiazole are remarkable heterocyclic ring systems. They have been found to exhibit a wide spectrum of biological activities. They have shown antitumor,antimalarial,and fungicide activity. They are also an important class of industrial chemicals. Many kinds of 2-substituted benzothiazoles are utilized as vulcanization accelators in the manufacture of rubber,as fluorescent brightening agents in textile dyeing,and in the leather industry (Chakraborti et al.,2004; Seijas et al.,2007). There are numerous synthetic methods to produce 2-arylbenzothiazoles. The most important ones include the reaction of o-aminothiophenols with benzoic acids or their derivatives (Chakraborti et al.,2004; Seijas et al.,2007). Microwave-assisted organic synthesis (MAOS) is a powerful technique that is being used more and more to accelerate thermal organic reactions (Kappe & Stadler, 2005). We are focusing on Microwave-assisted synthesis of new products of bisbenzothiazole. We here report the crystal structure of the title compound (I).
The phenyl ring A (C8/C9/C13), benzothiazolyl ring B(C1/C2/C6/C7) and benzothiazolyl ring C(C14/C15/C20) are planar (Fig. 1). The dihedral angles between them are A/B = 19.9°, A/C = 87.8°, B/C = 84.4°, respectively. All bond lengths are within normal ranges (Allen et al., 1987). There are weak intermolecular C—H···N hydrogen bonds whick link the molecule forming zig-zag chains parallel to the c axis .(Table 1, Fig.2).
Experimental
A mixture of 2-aminothiophenol (2.5 g, 20 mmol), 5 ml orthophosphoric acid, 5 g polyphosphoric acid and o-phthalic acid (1.66 g, 10 mmol) in a beakerflask (150 ml) was placed in a domestic microwave oven (0.8 KW, 2450 MHz) and irradiated (micromode, full power) for 4 min(30 s per time). The reaction mixture was cooled to r.t. and washed with aq NaOH (20%, 150 ml), The pH was adjusted to 10, the resulted solide was filtered. Then the crude compound(I) was obtained. It was crystallized from ethanol. Crystals of (I) suitable for X-ray diffraction were obtained by slow evaporation of methanol. 1H NMR (DMSO, δ, p.p.m.) 7.35–7.40 (m, 2 H), 7.46–7.51 (m, 2 H), 7.64 (dd,2 H), 7.81 (d, 2 H), 7.95 (dd,2 H), 8.05 (d,2 H).
Refinement
All H atoms were positioned geometrically, with C—H = 0.96 and 0.97 Å for methyl and methylene H atoms, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C), where x= 1.5 for methyl H and x = 1.2 for methylene H atoms.
Figures
Fig. 1.
A view of the molecular structure of (I) with the atom-numbering scheme. Ellipsoids are drawn at the 50% probability level. H atoms are represented as small spheres of arbitrary radii.
Fig. 2.
Partial packing view of (I) showing the C-H···N hydrogen bonds shown as dashed lines. [Symmetry code: (i) x, -y+1/2, z-1/2 ]
Crystal data
| C20H12N2S2 | F(000) = 712 |
| Mr = 344.44 | Dx = 1.383 Mg m−3 |
| Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
| Hall symbol: -P 2ybc | Cell parameters from 27 reflections |
| a = 10.748 (2) Å | θ = 1–25° |
| b = 19.148 (4) Å | µ = 0.32 mm−1 |
| c = 8.1840 (16) Å | T = 293 K |
| β = 100.77 (3)° | Block, yellow |
| V = 1654.6 (6) Å3 | 0.30 × 0.20 × 0.10 mm |
| Z = 4 |
Data collection
| Enraf–Nonius CAD-4 diffractometer | 1640 reflections with I > 2σ(I) |
| Radiation source: fine-focus sealed tube | Rint = 0.0000 |
| graphite | θmax = 25.3°, θmin = 1.9° |
| ω/2θ scans | h = −12→12 |
| Absorption correction: ψ scan (North et al., 1968) | k = 0→22 |
| Tmin = 0.909, Tmax = 0.968 | l = 0→9 |
| 3000 measured reflections | 3 standard reflections every 200 reflections |
| 3000 independent reflections | intensity decay: 9% |
Refinement
| Refinement on F2 | Primary atom site location: structure-invariant direct methods |
| Least-squares matrix: full | Secondary atom site location: difference Fourier map |
| R[F2 > 2σ(F2)] = 0.069 | Hydrogen site location: inferred from neighbouring sites |
| wR(F2) = 0.206 | H-atom parameters constrained |
| S = 1.10 | w = 1/[σ2(Fo2) + (0.0773P)2 + 1.3256P] where P = (Fo2 + 2Fc2)/3 |
| 3000 reflections | (Δ/σ)max < 0.001 |
| 217 parameters | Δρmax = 0.31 e Å−3 |
| 0 restraints | Δρmin = −0.32 e Å−3 |
Special details
| Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
| Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
| x | y | z | Uiso*/Ueq | ||
| C1 | 0.1724 (9) | 0.5336 (4) | 0.9897 (12) | 0.108 (3) | |
| H1 | 0.1202 | 0.5630 | 1.0376 | 0.130* | |
| C2 | 0.1344 (7) | 0.5137 (4) | 0.8270 (9) | 0.096 (2) | |
| H2 | 0.0583 | 0.5291 | 0.7640 | 0.116* | |
| C3 | 0.2149 (6) | 0.4693 (3) | 0.7600 (7) | 0.0610 (15) | |
| C4 | 0.3256 (5) | 0.4465 (3) | 0.8557 (6) | 0.0524 (13) | |
| C5 | 0.3633 (6) | 0.4661 (3) | 1.0209 (7) | 0.0664 (16) | |
| H5 | 0.4376 | 0.4496 | 1.0862 | 0.080* | |
| C6 | 0.2832 (8) | 0.5121 (4) | 1.0827 (9) | 0.085 (2) | |
| H6 | 0.3064 | 0.5284 | 1.1911 | 0.102* | |
| C7 | 0.2792 (4) | 0.4036 (3) | 0.5708 (6) | 0.0456 (12) | |
| C8 | 0.2677 (5) | 0.3692 (3) | 0.4050 (6) | 0.0457 (12) | |
| C9 | 0.1489 (5) | 0.3646 (3) | 0.3069 (7) | 0.0586 (15) | |
| H9 | 0.0800 | 0.3835 | 0.3453 | 0.070* | |
| C10 | 0.1297 (6) | 0.3325 (3) | 0.1532 (8) | 0.0712 (18) | |
| H10 | 0.0485 | 0.3300 | 0.0897 | 0.085* | |
| C11 | 0.2287 (6) | 0.3044 (3) | 0.0938 (8) | 0.0702 (17) | |
| H11 | 0.2159 | 0.2832 | −0.0102 | 0.084* | |
| C12 | 0.3461 (6) | 0.3079 (3) | 0.1882 (8) | 0.0664 (16) | |
| H12 | 0.4133 | 0.2888 | 0.1464 | 0.080* | |
| C13 | 0.3715 (5) | 0.3394 (3) | 0.3479 (6) | 0.0474 (12) | |
| C14 | 0.5036 (5) | 0.3402 (3) | 0.4373 (6) | 0.0486 (13) | |
| C15 | 0.6821 (5) | 0.3021 (3) | 0.5897 (6) | 0.0478 (13) | |
| C16 | 0.7649 (6) | 0.2577 (3) | 0.6947 (8) | 0.0701 (17) | |
| H16 | 0.7366 | 0.2153 | 0.7297 | 0.084* | |
| C17 | 0.8887 (6) | 0.2782 (4) | 0.7449 (8) | 0.0744 (18) | |
| H17 | 0.9447 | 0.2498 | 0.8157 | 0.089* | |
| C18 | 0.9307 (6) | 0.3412 (4) | 0.6907 (7) | 0.0682 (17) | |
| H18 | 1.0155 | 0.3532 | 0.7240 | 0.082* | |
| C19 | 0.8532 (5) | 0.3858 (3) | 0.5915 (7) | 0.0590 (15) | |
| H19 | 0.8835 | 0.4280 | 0.5583 | 0.071* | |
| C20 | 0.7256 (4) | 0.3666 (3) | 0.5396 (6) | 0.0470 (12) | |
| N1 | 0.1893 (4) | 0.4454 (2) | 0.5978 (5) | 0.0545 (12) | |
| N2 | 0.5565 (4) | 0.2888 (2) | 0.5286 (5) | 0.0538 (11) | |
| S1 | 0.40034 (14) | 0.39075 (8) | 0.73836 (18) | 0.0629 (5) | |
| S2 | 0.60337 (13) | 0.40998 (7) | 0.41671 (19) | 0.0594 (5) |
Atomic displacement parameters (Å2)
| U11 | U22 | U33 | U12 | U13 | U23 | |
| C1 | 0.126 (7) | 0.104 (7) | 0.109 (7) | 0.032 (6) | 0.056 (6) | −0.017 (5) |
| C2 | 0.102 (6) | 0.112 (6) | 0.083 (5) | 0.036 (5) | 0.038 (4) | −0.013 (5) |
| C3 | 0.071 (4) | 0.061 (4) | 0.058 (4) | 0.003 (3) | 0.029 (3) | −0.004 (3) |
| C4 | 0.058 (3) | 0.054 (3) | 0.048 (3) | −0.007 (3) | 0.017 (3) | 0.000 (3) |
| C5 | 0.077 (4) | 0.075 (4) | 0.048 (3) | −0.020 (3) | 0.014 (3) | −0.005 (3) |
| C6 | 0.114 (6) | 0.085 (5) | 0.067 (4) | −0.017 (5) | 0.048 (4) | −0.024 (4) |
| C7 | 0.038 (3) | 0.048 (3) | 0.051 (3) | −0.001 (2) | 0.010 (2) | 0.008 (2) |
| C8 | 0.049 (3) | 0.041 (3) | 0.050 (3) | 0.003 (2) | 0.016 (2) | 0.005 (2) |
| C9 | 0.047 (3) | 0.073 (4) | 0.055 (4) | −0.002 (3) | 0.010 (3) | −0.006 (3) |
| C10 | 0.057 (4) | 0.083 (5) | 0.069 (4) | 0.000 (3) | −0.001 (3) | 0.005 (4) |
| C11 | 0.079 (4) | 0.068 (4) | 0.061 (4) | −0.002 (4) | 0.007 (3) | −0.013 (3) |
| C12 | 0.072 (4) | 0.060 (4) | 0.071 (4) | 0.007 (3) | 0.023 (3) | −0.010 (3) |
| C13 | 0.050 (3) | 0.042 (3) | 0.053 (3) | 0.000 (2) | 0.017 (2) | −0.003 (2) |
| C14 | 0.049 (3) | 0.051 (3) | 0.052 (3) | 0.007 (2) | 0.026 (2) | 0.004 (3) |
| C15 | 0.047 (3) | 0.055 (3) | 0.045 (3) | 0.013 (2) | 0.019 (2) | 0.009 (2) |
| C16 | 0.076 (4) | 0.069 (4) | 0.072 (4) | 0.015 (3) | 0.030 (3) | 0.023 (3) |
| C17 | 0.075 (4) | 0.082 (5) | 0.069 (4) | 0.022 (4) | 0.021 (4) | 0.013 (4) |
| C18 | 0.056 (3) | 0.094 (5) | 0.055 (4) | 0.007 (3) | 0.011 (3) | −0.010 (4) |
| C19 | 0.059 (3) | 0.065 (4) | 0.055 (3) | −0.003 (3) | 0.016 (3) | −0.005 (3) |
| C20 | 0.043 (3) | 0.056 (3) | 0.045 (3) | 0.006 (2) | 0.015 (2) | 0.005 (2) |
| N1 | 0.045 (2) | 0.062 (3) | 0.057 (3) | 0.015 (2) | 0.012 (2) | 0.000 (2) |
| N2 | 0.053 (3) | 0.054 (3) | 0.058 (3) | −0.002 (2) | 0.021 (2) | 0.002 (2) |
| S1 | 0.0625 (9) | 0.0730 (11) | 0.0537 (9) | 0.0142 (8) | 0.0116 (7) | −0.0059 (8) |
| S2 | 0.0572 (9) | 0.0493 (8) | 0.0699 (10) | −0.0033 (7) | 0.0072 (7) | 0.0119 (7) |
Geometric parameters (Å, °)
| C1—C6 | 1.352 (10) | C10—H10 | 0.9300 |
| C1—C2 | 1.372 (10) | C11—C12 | 1.352 (8) |
| C1—H1 | 0.9300 | C11—H11 | 0.9300 |
| C2—C3 | 1.395 (8) | C12—C13 | 1.418 (7) |
| C2—H2 | 0.9300 | C12—H12 | 0.9300 |
| C3—C4 | 1.369 (7) | C13—C14 | 1.471 (7) |
| C3—N1 | 1.383 (7) | C14—N2 | 1.301 (6) |
| C4—C5 | 1.389 (7) | C14—S2 | 1.740 (5) |
| C4—S1 | 1.730 (5) | C15—N2 | 1.373 (6) |
| C5—C6 | 1.391 (9) | C15—C16 | 1.402 (7) |
| C5—H5 | 0.9300 | C15—C20 | 1.409 (7) |
| C6—H6 | 0.9300 | C16—C17 | 1.374 (8) |
| C7—N1 | 1.305 (6) | C16—H16 | 0.9300 |
| C7—C8 | 1.492 (7) | C17—C18 | 1.390 (9) |
| C7—S1 | 1.723 (5) | C17—H17 | 0.9300 |
| C8—C9 | 1.379 (7) | C18—C19 | 1.352 (8) |
| C8—C13 | 1.409 (7) | C18—H18 | 0.9300 |
| C9—C10 | 1.381 (8) | C19—C20 | 1.407 (7) |
| C9—H9 | 0.9300 | C19—H19 | 0.9300 |
| C10—C11 | 1.360 (8) | C20—S2 | 1.712 (5) |
| C6—C1—C2 | 122.1 (7) | C10—C11—H11 | 120.5 |
| C6—C1—H1 | 118.9 | C11—C12—C13 | 123.1 (6) |
| C2—C1—H1 | 118.9 | C11—C12—H12 | 118.4 |
| C1—C2—C3 | 117.2 (7) | C13—C12—H12 | 118.4 |
| C1—C2—H2 | 121.4 | C8—C13—C12 | 116.7 (5) |
| C3—C2—H2 | 121.4 | C8—C13—C14 | 125.5 (5) |
| C4—C3—N1 | 116.0 (5) | C12—C13—C14 | 117.8 (5) |
| C4—C3—C2 | 120.4 (6) | N2—C14—C13 | 123.7 (5) |
| N1—C3—C2 | 123.6 (6) | N2—C14—S2 | 115.2 (4) |
| C3—C4—C5 | 122.3 (6) | C13—C14—S2 | 121.0 (4) |
| C3—C4—S1 | 108.9 (4) | N2—C15—C16 | 125.4 (5) |
| C5—C4—S1 | 128.8 (5) | N2—C15—C20 | 114.4 (4) |
| C4—C5—C6 | 115.9 (6) | C16—C15—C20 | 120.2 (5) |
| C4—C5—H5 | 122.0 | C17—C16—C15 | 118.5 (6) |
| C6—C5—H5 | 122.0 | C17—C16—H16 | 120.7 |
| C1—C6—C5 | 121.9 (7) | C15—C16—H16 | 120.7 |
| C1—C6—H6 | 119.0 | C16—C17—C18 | 120.5 (6) |
| C5—C6—H6 | 119.0 | C16—C17—H17 | 119.8 |
| N1—C7—C8 | 119.1 (4) | C18—C17—H17 | 119.8 |
| N1—C7—S1 | 115.2 (4) | C19—C18—C17 | 122.6 (6) |
| C8—C7—S1 | 125.6 (4) | C19—C18—H18 | 118.7 |
| C9—C8—C13 | 119.0 (5) | C17—C18—H18 | 118.7 |
| C9—C8—C7 | 117.9 (4) | C18—C19—C20 | 118.2 (6) |
| C13—C8—C7 | 123.0 (4) | C18—C19—H19 | 120.9 |
| C8—C9—C10 | 121.6 (5) | C20—C19—H19 | 120.9 |
| C8—C9—H9 | 119.2 | C19—C20—C15 | 119.9 (5) |
| C10—C9—H9 | 119.2 | C19—C20—S2 | 130.4 (4) |
| C11—C10—C9 | 120.5 (6) | C15—C20—S2 | 109.7 (4) |
| C11—C10—H10 | 119.7 | C7—N1—C3 | 110.2 (4) |
| C9—C10—H10 | 119.7 | C14—N2—C15 | 111.4 (4) |
| C12—C11—C10 | 119.0 (6) | C7—S1—C4 | 89.6 (3) |
| C12—C11—H11 | 120.5 | C20—S2—C14 | 89.4 (3) |
Hydrogen-bond geometry (Å, °)
| D—H···A | D—H | H···A | D···A | D—H···A |
| C12—H12···N2i | 0.93 | 2.46 | 3.370 (7) | 165 |
Symmetry codes: (i) x, −y+1/2, z−1/2.
Footnotes
Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DN2416).
References
- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
- Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
- Chakraborti, A. K., Selvam, C., Kaur, G. & Bhagat, S. (2004). Synlett, pp. 851–855.
- Enraf–Nonius (1989). CAD-4 Software Enraf–Nonius, Delft, The Netherlands.
- Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
- Harms, K. & Wocadlo, S. (1995). XCAD4 University of Marburg, Germany.
- Kappe, C. O. & Stadler, A. (2005). In Microwaves in Organic and Medicinal Chemistry Weinheim: Wiley-VCH.
- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
- Seijas, J. A., Vazquez, T. M. P., Carballido, R. M. R., Crecente, C. J. & Romar, L. L. (2007). Synlett, pp. 313–317.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
- Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808042542/dn2416sup1.cif
Structure factors: contains datablocks I. DOI: 10.1107/S1600536808042542/dn2416Isup2.hkl
Additional supplementary materials: crystallographic information; 3D view; checkCIF report


