Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Dec 20;65(Pt 1):o158. doi: 10.1107/S1600536808042542

1,2-Bis(1,3-benzothia­zol-2-yl)benzene

Guo-wei Wang a,*, Lin-ping Wu a, Ling-hua Zhuang b, Jin-tang Wang b
PMCID: PMC2968071  PMID: 21581615

Abstract

The title compound, C20H12N2S2, was prepared by the reaction of o-phthalic acid and 2-amino­thio­phenol under microwave irradation. The phenyl ring, A, and the benzothia­zolyl rings, B and C, are planar; the dihedral angles are A/B = 19.9 (11), A/C = 87.8 (3) and B/C = 84.4 (4)°. Weak inter­molecular C—H⋯N hydrogen bonds link the mol­ecule, forming zigzag chains parallel to the c axis.

Related literature

For details of the synthesis and applications of benzothia­zoles, see: Chakraborti et al. (2004); Seijas et al. (2007). For the use of microwave-assisted organic synthesis, see: Kappe & Stadler (2005). For bond-length data, see: Allen et al. (1987).graphic file with name e-65-0o158-scheme1.jpg

Experimental

Crystal data

  • C20H12N2S2

  • M r = 344.44

  • Monoclinic, Inline graphic

  • a = 10.748 (2) Å

  • b = 19.148 (4) Å

  • c = 8.1840 (16) Å

  • β = 100.77 (3)°

  • V = 1654.6 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.32 mm−1

  • T = 293 (2) K

  • 0.30 × 0.20 × 0.10 mm

Data collection

  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968) T min = 0.909, T max = 0.968

  • 3000 measured reflections

  • 3000 independent reflections

  • 1640 reflections with I > 2σ(I)

  • 3 standard reflections every 200 reflections intensity decay: 9%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.069

  • wR(F 2) = 0.206

  • S = 1.10

  • 3000 reflections

  • 217 parameters

  • H-atom parameters constrained

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.32 e Å−3

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808042542/dn2416sup1.cif

e-65-0o158-sup1.cif (16.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808042542/dn2416Isup2.hkl

e-65-0o158-Isup2.hkl (147.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C12—H12⋯N2i 0.93 2.46 3.370 (7) 165

Symmetry code: (i) Inline graphic.

Acknowledgments

The authors thank the Center of Testing and Analysis, Nanjing University, for support.

supplementary crystallographic information

Comment

Benzothiazole are remarkable heterocyclic ring systems. They have been found to exhibit a wide spectrum of biological activities. They have shown antitumor,antimalarial,and fungicide activity. They are also an important class of industrial chemicals. Many kinds of 2-substituted benzothiazoles are utilized as vulcanization accelators in the manufacture of rubber,as fluorescent brightening agents in textile dyeing,and in the leather industry (Chakraborti et al.,2004; Seijas et al.,2007). There are numerous synthetic methods to produce 2-arylbenzothiazoles. The most important ones include the reaction of o-aminothiophenols with benzoic acids or their derivatives (Chakraborti et al.,2004; Seijas et al.,2007). Microwave-assisted organic synthesis (MAOS) is a powerful technique that is being used more and more to accelerate thermal organic reactions (Kappe & Stadler, 2005). We are focusing on Microwave-assisted synthesis of new products of bisbenzothiazole. We here report the crystal structure of the title compound (I).

The phenyl ring A (C8/C9/C13), benzothiazolyl ring B(C1/C2/C6/C7) and benzothiazolyl ring C(C14/C15/C20) are planar (Fig. 1). The dihedral angles between them are A/B = 19.9°, A/C = 87.8°, B/C = 84.4°, respectively. All bond lengths are within normal ranges (Allen et al., 1987). There are weak intermolecular C—H···N hydrogen bonds whick link the molecule forming zig-zag chains parallel to the c axis .(Table 1, Fig.2).

Experimental

A mixture of 2-aminothiophenol (2.5 g, 20 mmol), 5 ml orthophosphoric acid, 5 g polyphosphoric acid and o-phthalic acid (1.66 g, 10 mmol) in a beakerflask (150 ml) was placed in a domestic microwave oven (0.8 KW, 2450 MHz) and irradiated (micromode, full power) for 4 min(30 s per time). The reaction mixture was cooled to r.t. and washed with aq NaOH (20%, 150 ml), The pH was adjusted to 10, the resulted solide was filtered. Then the crude compound(I) was obtained. It was crystallized from ethanol. Crystals of (I) suitable for X-ray diffraction were obtained by slow evaporation of methanol. 1H NMR (DMSO, δ, p.p.m.) 7.35–7.40 (m, 2 H), 7.46–7.51 (m, 2 H), 7.64 (dd,2 H), 7.81 (d, 2 H), 7.95 (dd,2 H), 8.05 (d,2 H).

Refinement

All H atoms were positioned geometrically, with C—H = 0.96 and 0.97 Å for methyl and methylene H atoms, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C), where x= 1.5 for methyl H and x = 1.2 for methylene H atoms.

Figures

Fig. 1.

Fig. 1.

A view of the molecular structure of (I) with the atom-numbering scheme. Ellipsoids are drawn at the 50% probability level. H atoms are represented as small spheres of arbitrary radii.

Fig. 2.

Fig. 2.

Partial packing view of (I) showing the C-H···N hydrogen bonds shown as dashed lines. [Symmetry code: (i) x, -y+1/2, z-1/2 ]

Crystal data

C20H12N2S2 F(000) = 712
Mr = 344.44 Dx = 1.383 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 27 reflections
a = 10.748 (2) Å θ = 1–25°
b = 19.148 (4) Å µ = 0.32 mm1
c = 8.1840 (16) Å T = 293 K
β = 100.77 (3)° Block, yellow
V = 1654.6 (6) Å3 0.30 × 0.20 × 0.10 mm
Z = 4

Data collection

Enraf–Nonius CAD-4 diffractometer 1640 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.0000
graphite θmax = 25.3°, θmin = 1.9°
ω/2θ scans h = −12→12
Absorption correction: ψ scan (North et al., 1968) k = 0→22
Tmin = 0.909, Tmax = 0.968 l = 0→9
3000 measured reflections 3 standard reflections every 200 reflections
3000 independent reflections intensity decay: 9%

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.069 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.206 H-atom parameters constrained
S = 1.10 w = 1/[σ2(Fo2) + (0.0773P)2 + 1.3256P] where P = (Fo2 + 2Fc2)/3
3000 reflections (Δ/σ)max < 0.001
217 parameters Δρmax = 0.31 e Å3
0 restraints Δρmin = −0.32 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.1724 (9) 0.5336 (4) 0.9897 (12) 0.108 (3)
H1 0.1202 0.5630 1.0376 0.130*
C2 0.1344 (7) 0.5137 (4) 0.8270 (9) 0.096 (2)
H2 0.0583 0.5291 0.7640 0.116*
C3 0.2149 (6) 0.4693 (3) 0.7600 (7) 0.0610 (15)
C4 0.3256 (5) 0.4465 (3) 0.8557 (6) 0.0524 (13)
C5 0.3633 (6) 0.4661 (3) 1.0209 (7) 0.0664 (16)
H5 0.4376 0.4496 1.0862 0.080*
C6 0.2832 (8) 0.5121 (4) 1.0827 (9) 0.085 (2)
H6 0.3064 0.5284 1.1911 0.102*
C7 0.2792 (4) 0.4036 (3) 0.5708 (6) 0.0456 (12)
C8 0.2677 (5) 0.3692 (3) 0.4050 (6) 0.0457 (12)
C9 0.1489 (5) 0.3646 (3) 0.3069 (7) 0.0586 (15)
H9 0.0800 0.3835 0.3453 0.070*
C10 0.1297 (6) 0.3325 (3) 0.1532 (8) 0.0712 (18)
H10 0.0485 0.3300 0.0897 0.085*
C11 0.2287 (6) 0.3044 (3) 0.0938 (8) 0.0702 (17)
H11 0.2159 0.2832 −0.0102 0.084*
C12 0.3461 (6) 0.3079 (3) 0.1882 (8) 0.0664 (16)
H12 0.4133 0.2888 0.1464 0.080*
C13 0.3715 (5) 0.3394 (3) 0.3479 (6) 0.0474 (12)
C14 0.5036 (5) 0.3402 (3) 0.4373 (6) 0.0486 (13)
C15 0.6821 (5) 0.3021 (3) 0.5897 (6) 0.0478 (13)
C16 0.7649 (6) 0.2577 (3) 0.6947 (8) 0.0701 (17)
H16 0.7366 0.2153 0.7297 0.084*
C17 0.8887 (6) 0.2782 (4) 0.7449 (8) 0.0744 (18)
H17 0.9447 0.2498 0.8157 0.089*
C18 0.9307 (6) 0.3412 (4) 0.6907 (7) 0.0682 (17)
H18 1.0155 0.3532 0.7240 0.082*
C19 0.8532 (5) 0.3858 (3) 0.5915 (7) 0.0590 (15)
H19 0.8835 0.4280 0.5583 0.071*
C20 0.7256 (4) 0.3666 (3) 0.5396 (6) 0.0470 (12)
N1 0.1893 (4) 0.4454 (2) 0.5978 (5) 0.0545 (12)
N2 0.5565 (4) 0.2888 (2) 0.5286 (5) 0.0538 (11)
S1 0.40034 (14) 0.39075 (8) 0.73836 (18) 0.0629 (5)
S2 0.60337 (13) 0.40998 (7) 0.41671 (19) 0.0594 (5)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.126 (7) 0.104 (7) 0.109 (7) 0.032 (6) 0.056 (6) −0.017 (5)
C2 0.102 (6) 0.112 (6) 0.083 (5) 0.036 (5) 0.038 (4) −0.013 (5)
C3 0.071 (4) 0.061 (4) 0.058 (4) 0.003 (3) 0.029 (3) −0.004 (3)
C4 0.058 (3) 0.054 (3) 0.048 (3) −0.007 (3) 0.017 (3) 0.000 (3)
C5 0.077 (4) 0.075 (4) 0.048 (3) −0.020 (3) 0.014 (3) −0.005 (3)
C6 0.114 (6) 0.085 (5) 0.067 (4) −0.017 (5) 0.048 (4) −0.024 (4)
C7 0.038 (3) 0.048 (3) 0.051 (3) −0.001 (2) 0.010 (2) 0.008 (2)
C8 0.049 (3) 0.041 (3) 0.050 (3) 0.003 (2) 0.016 (2) 0.005 (2)
C9 0.047 (3) 0.073 (4) 0.055 (4) −0.002 (3) 0.010 (3) −0.006 (3)
C10 0.057 (4) 0.083 (5) 0.069 (4) 0.000 (3) −0.001 (3) 0.005 (4)
C11 0.079 (4) 0.068 (4) 0.061 (4) −0.002 (4) 0.007 (3) −0.013 (3)
C12 0.072 (4) 0.060 (4) 0.071 (4) 0.007 (3) 0.023 (3) −0.010 (3)
C13 0.050 (3) 0.042 (3) 0.053 (3) 0.000 (2) 0.017 (2) −0.003 (2)
C14 0.049 (3) 0.051 (3) 0.052 (3) 0.007 (2) 0.026 (2) 0.004 (3)
C15 0.047 (3) 0.055 (3) 0.045 (3) 0.013 (2) 0.019 (2) 0.009 (2)
C16 0.076 (4) 0.069 (4) 0.072 (4) 0.015 (3) 0.030 (3) 0.023 (3)
C17 0.075 (4) 0.082 (5) 0.069 (4) 0.022 (4) 0.021 (4) 0.013 (4)
C18 0.056 (3) 0.094 (5) 0.055 (4) 0.007 (3) 0.011 (3) −0.010 (4)
C19 0.059 (3) 0.065 (4) 0.055 (3) −0.003 (3) 0.016 (3) −0.005 (3)
C20 0.043 (3) 0.056 (3) 0.045 (3) 0.006 (2) 0.015 (2) 0.005 (2)
N1 0.045 (2) 0.062 (3) 0.057 (3) 0.015 (2) 0.012 (2) 0.000 (2)
N2 0.053 (3) 0.054 (3) 0.058 (3) −0.002 (2) 0.021 (2) 0.002 (2)
S1 0.0625 (9) 0.0730 (11) 0.0537 (9) 0.0142 (8) 0.0116 (7) −0.0059 (8)
S2 0.0572 (9) 0.0493 (8) 0.0699 (10) −0.0033 (7) 0.0072 (7) 0.0119 (7)

Geometric parameters (Å, °)

C1—C6 1.352 (10) C10—H10 0.9300
C1—C2 1.372 (10) C11—C12 1.352 (8)
C1—H1 0.9300 C11—H11 0.9300
C2—C3 1.395 (8) C12—C13 1.418 (7)
C2—H2 0.9300 C12—H12 0.9300
C3—C4 1.369 (7) C13—C14 1.471 (7)
C3—N1 1.383 (7) C14—N2 1.301 (6)
C4—C5 1.389 (7) C14—S2 1.740 (5)
C4—S1 1.730 (5) C15—N2 1.373 (6)
C5—C6 1.391 (9) C15—C16 1.402 (7)
C5—H5 0.9300 C15—C20 1.409 (7)
C6—H6 0.9300 C16—C17 1.374 (8)
C7—N1 1.305 (6) C16—H16 0.9300
C7—C8 1.492 (7) C17—C18 1.390 (9)
C7—S1 1.723 (5) C17—H17 0.9300
C8—C9 1.379 (7) C18—C19 1.352 (8)
C8—C13 1.409 (7) C18—H18 0.9300
C9—C10 1.381 (8) C19—C20 1.407 (7)
C9—H9 0.9300 C19—H19 0.9300
C10—C11 1.360 (8) C20—S2 1.712 (5)
C6—C1—C2 122.1 (7) C10—C11—H11 120.5
C6—C1—H1 118.9 C11—C12—C13 123.1 (6)
C2—C1—H1 118.9 C11—C12—H12 118.4
C1—C2—C3 117.2 (7) C13—C12—H12 118.4
C1—C2—H2 121.4 C8—C13—C12 116.7 (5)
C3—C2—H2 121.4 C8—C13—C14 125.5 (5)
C4—C3—N1 116.0 (5) C12—C13—C14 117.8 (5)
C4—C3—C2 120.4 (6) N2—C14—C13 123.7 (5)
N1—C3—C2 123.6 (6) N2—C14—S2 115.2 (4)
C3—C4—C5 122.3 (6) C13—C14—S2 121.0 (4)
C3—C4—S1 108.9 (4) N2—C15—C16 125.4 (5)
C5—C4—S1 128.8 (5) N2—C15—C20 114.4 (4)
C4—C5—C6 115.9 (6) C16—C15—C20 120.2 (5)
C4—C5—H5 122.0 C17—C16—C15 118.5 (6)
C6—C5—H5 122.0 C17—C16—H16 120.7
C1—C6—C5 121.9 (7) C15—C16—H16 120.7
C1—C6—H6 119.0 C16—C17—C18 120.5 (6)
C5—C6—H6 119.0 C16—C17—H17 119.8
N1—C7—C8 119.1 (4) C18—C17—H17 119.8
N1—C7—S1 115.2 (4) C19—C18—C17 122.6 (6)
C8—C7—S1 125.6 (4) C19—C18—H18 118.7
C9—C8—C13 119.0 (5) C17—C18—H18 118.7
C9—C8—C7 117.9 (4) C18—C19—C20 118.2 (6)
C13—C8—C7 123.0 (4) C18—C19—H19 120.9
C8—C9—C10 121.6 (5) C20—C19—H19 120.9
C8—C9—H9 119.2 C19—C20—C15 119.9 (5)
C10—C9—H9 119.2 C19—C20—S2 130.4 (4)
C11—C10—C9 120.5 (6) C15—C20—S2 109.7 (4)
C11—C10—H10 119.7 C7—N1—C3 110.2 (4)
C9—C10—H10 119.7 C14—N2—C15 111.4 (4)
C12—C11—C10 119.0 (6) C7—S1—C4 89.6 (3)
C12—C11—H11 120.5 C20—S2—C14 89.4 (3)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C12—H12···N2i 0.93 2.46 3.370 (7) 165

Symmetry codes: (i) x, −y+1/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DN2416).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
  3. Chakraborti, A. K., Selvam, C., Kaur, G. & Bhagat, S. (2004). Synlett, pp. 851–855.
  4. Enraf–Nonius (1989). CAD-4 Software Enraf–Nonius, Delft, The Netherlands.
  5. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  6. Harms, K. & Wocadlo, S. (1995). XCAD4 University of Marburg, Germany.
  7. Kappe, C. O. & Stadler, A. (2005). In Microwaves in Organic and Medicinal Chemistry Weinheim: Wiley-VCH.
  8. North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
  9. Seijas, J. A., Vazquez, T. M. P., Carballido, R. M. R., Crecente, C. J. & Romar, L. L. (2007). Synlett, pp. 313–317.
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  11. Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808042542/dn2416sup1.cif

e-65-0o158-sup1.cif (16.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808042542/dn2416Isup2.hkl

e-65-0o158-Isup2.hkl (147.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES