Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Dec 20;65(Pt 1):o162. doi: 10.1107/S1600536808042505

N-(4-Chloro­phen­yl)-4-(2-oxocyclo­pent­yl)butyramide

Lin-Tao Yu a, Jiang-Tao Wei a, Xiang-Ge Zhou a,*
PMCID: PMC2968074  PMID: 21581619

Abstract

In the title compound, C15H18ClNO2, the amide group is coplanar with the chloro­phenyl group, making a dihedral angle of 1.71 (12)°. The cyclo­penta­none ring adopts a twist conformation. A weak intra­molecular C—H⋯O hydrogen bond is observed. Mol­ecules are linked into cyclic centrosymmetric dimers by paired N—H⋯O hydrogen bonds.

Related literature

For the synthesis of cyathin terpenoids, see: Drège et al. (2006).graphic file with name e-65-0o162-scheme1.jpg

Experimental

Crystal data

  • C15H18ClNO2

  • M r = 279.75

  • Triclinic, Inline graphic

  • a = 5.5897 (2) Å

  • b = 8.8847 (3) Å

  • c = 14.6480 (4) Å

  • α = 80.906 (2)°

  • β = 86.436 (2)°

  • γ = 85.351 (2)°

  • V = 715.05 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.27 mm−1

  • T = 296 (2) K

  • 0.42 × 0.40 × 0.20 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001) T min = 0.895, T max = 0.948

  • 8899 measured reflections

  • 3273 independent reflections

  • 1648 reflections with I > 2σ(I)

  • R int = 0.047

Refinement

  • R[F 2 > 2σ(F 2)] = 0.053

  • wR(F 2) = 0.147

  • S = 1.01

  • 3273 reflections

  • 172 parameters

  • H-atom parameters constrained

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.21 e Å−3

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808042505/ci2743sup1.cif

e-65-0o162-sup1.cif (18KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808042505/ci2743Isup2.hkl

e-65-0o162-Isup2.hkl (160.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O1i 0.86 2.17 2.980 (2) 158
C15—H15⋯O2 0.93 2.29 2.889 (2) 121

Symmetry code: (i) Inline graphic.

Acknowledgments

The authors thank the NSFC (grant Nos. 20672075 and 20771076) and Sichuan University for financial support.

supplementary crystallographic information

Comment

2-Oxocyclopentyl carboxylic acid derivatives are a class of starting materials important for the preparation of cyathin terpenoids (Drège et al., 2006). We report here the crystal structure of the title compound, a oxocyclopentyl derivative.

Bond lengths and angles are normal. The amide group is almost coplanar with the benzene ring system (Fig. 1). The C8/C9/N1/O2 and C10—C15 planes form dihedral angle of 1.71 (12)°. The cyclopentanone ring adopts a twist conformation. An intramolecular C15—H15···O2 hydrogen bond is observed.

The crystal packing is stabilized by N—H···O hydrogen bonds (Table 1). The molecules are linked into cyclic centrosymmetric dimers by paired N—H···O hydrogen bonds.

Experimental

A mixture of spiro[4,4]nonane-1,6-dione (1 mmol), p-chloroaniline (2.2 mmol) and iodine (0.1 mmol) was stirred in refluxing dichloromethane (20 ml) for 24 h to afford the title compound. Single crystals suitable for X-ray diffraction were obtained by slow evaporation an ethyl acetate solution.

Refinement

All H atoms were placed in calculated positions, with C-H = 0.93–0.98 Å and N-H = 0.86 Å, and refined using a riding model, with Uiso(H) = 1.2Ueq(C,N).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, showing 30% probability displacement ellipsoids and the atomic numbering. H atoms have been omitted for clarity.

Crystal data

C15H18ClNO2 Z = 2
Mr = 279.75 F(000) = 296
Triclinic, P1 Dx = 1.299 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 5.5897 (2) Å Cell parameters from 2436 reflections
b = 8.8847 (3) Å θ = 2.8–25.4°
c = 14.6480 (4) Å µ = 0.27 mm1
α = 80.906 (2)° T = 296 K
β = 86.436 (2)° Plate, colourless
γ = 85.351 (2)° 0.42 × 0.40 × 0.20 mm
V = 715.05 (4) Å3

Data collection

Bruker SMART CCD area-detector diffractometer 3273 independent reflections
Radiation source: fine-focus sealed tube 1648 reflections with I > 2σ(I)
graphite Rint = 0.047
φ and ω scans θmax = 27.5°, θmin = 2.3°
Absorption correction: multi-scan (SADABS; Bruker, 2001) h = −7→7
Tmin = 0.895, Tmax = 0.948 k = −11→11
8899 measured reflections l = −18→18

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.147 H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0664P)2] where P = (Fo2 + 2Fc2)/3
3273 reflections (Δ/σ)max = 0.001
172 parameters Δρmax = 0.35 e Å3
0 restraints Δρmin = −0.20 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1 1.27737 (9) 0.49407 (7) 0.08887 (3) 0.06892 (18)
O1 −0.2238 (3) 1.05919 (19) 0.73712 (11) 0.0902 (5)
O2 0.7274 (3) 0.6356 (2) 0.50469 (10) 0.0867 (5)
N1 0.5659 (3) 0.70953 (19) 0.36547 (10) 0.0563 (5)
H1N 0.4405 0.7567 0.3402 0.068*
C1 −0.0587 (4) 0.9846 (2) 0.77649 (14) 0.0629 (6)
C2 −0.0494 (4) 0.9474 (3) 0.87916 (14) 0.0796 (8)
H2A −0.1708 0.8781 0.9045 0.095*
H2B −0.0749 1.0394 0.9075 0.095*
C3 0.2010 (4) 0.8723 (3) 0.89563 (15) 0.0833 (8)
H3A 0.1979 0.7899 0.9477 0.100*
H3B 0.3091 0.9461 0.9077 0.100*
C4 0.2785 (4) 0.8112 (3) 0.80617 (14) 0.0780 (7)
H4A 0.4521 0.8053 0.7971 0.094*
H4B 0.2232 0.7101 0.8075 0.094*
C5 0.1666 (4) 0.9211 (3) 0.73132 (14) 0.0690 (7)
H5 0.2718 1.0058 0.7195 0.083*
C6 0.1382 (3) 0.8771 (2) 0.63830 (13) 0.0604 (6)
H6A 0.0857 0.9677 0.5962 0.072*
H6B 0.0131 0.8062 0.6438 0.072*
C7 0.3644 (4) 0.8047 (3) 0.59707 (14) 0.0640 (6)
H7A 0.4926 0.8726 0.5956 0.077*
H7B 0.4106 0.7102 0.6369 0.077*
C8 0.3397 (4) 0.7707 (3) 0.50060 (13) 0.0643 (6)
H8A 0.2114 0.7029 0.5022 0.077*
H8B 0.2928 0.8653 0.4610 0.077*
C9 0.5627 (3) 0.6992 (2) 0.45871 (13) 0.0569 (6)
C10 0.7424 (3) 0.6552 (2) 0.30324 (12) 0.0480 (5)
C11 0.6974 (3) 0.6867 (2) 0.21012 (13) 0.0567 (6)
H11 0.5551 0.7414 0.1916 0.068*
C12 0.8597 (3) 0.6383 (2) 0.14440 (13) 0.0583 (6)
H12 0.8272 0.6598 0.0820 0.070*
C13 1.0715 (4) 0.5576 (2) 0.17201 (13) 0.0541 (5)
C14 1.1172 (3) 0.5254 (2) 0.26439 (13) 0.0573 (6)
H14 1.2602 0.4712 0.2826 0.069*
C15 0.9538 (3) 0.5726 (2) 0.33070 (13) 0.0544 (5)
H15 0.9854 0.5491 0.3931 0.065*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.0568 (3) 0.0872 (4) 0.0638 (3) 0.0107 (3) 0.0032 (2) −0.0254 (3)
O1 0.0787 (10) 0.1028 (12) 0.0828 (10) 0.0400 (9) −0.0128 (8) −0.0151 (9)
O2 0.0723 (10) 0.1230 (13) 0.0595 (9) 0.0368 (10) −0.0164 (8) −0.0149 (9)
N1 0.0465 (9) 0.0684 (11) 0.0526 (9) 0.0090 (8) −0.0091 (7) −0.0088 (8)
C1 0.0598 (12) 0.0642 (14) 0.0629 (12) 0.0108 (11) −0.0048 (10) −0.0112 (11)
C2 0.0792 (15) 0.0972 (18) 0.0594 (13) 0.0053 (14) 0.0041 (12) −0.0120 (13)
C3 0.0906 (17) 0.1014 (19) 0.0553 (12) 0.0122 (15) −0.0159 (12) −0.0090 (13)
C4 0.0749 (15) 0.0888 (17) 0.0686 (14) 0.0144 (13) −0.0177 (12) −0.0118 (13)
C5 0.0677 (13) 0.0778 (15) 0.0586 (12) 0.0218 (12) −0.0071 (11) −0.0137 (12)
C6 0.0537 (12) 0.0688 (14) 0.0581 (11) 0.0089 (11) −0.0066 (10) −0.0132 (11)
C7 0.0566 (12) 0.0726 (15) 0.0634 (12) 0.0057 (11) −0.0043 (10) −0.0173 (11)
C8 0.0556 (12) 0.0810 (15) 0.0556 (12) 0.0094 (11) −0.0046 (10) −0.0148 (11)
C9 0.0502 (11) 0.0674 (14) 0.0524 (11) 0.0056 (11) −0.0091 (10) −0.0096 (10)
C10 0.0442 (10) 0.0490 (12) 0.0512 (10) 0.0003 (9) −0.0041 (9) −0.0102 (9)
C11 0.0497 (11) 0.0652 (13) 0.0543 (11) 0.0058 (10) −0.0097 (9) −0.0091 (10)
C12 0.0577 (12) 0.0693 (14) 0.0482 (11) 0.0029 (11) −0.0078 (9) −0.0117 (10)
C13 0.0524 (11) 0.0540 (12) 0.0572 (11) −0.0021 (10) 0.0000 (9) −0.0144 (10)
C14 0.0513 (11) 0.0565 (13) 0.0634 (12) 0.0066 (10) −0.0109 (10) −0.0094 (11)
C15 0.0527 (11) 0.0596 (13) 0.0505 (11) 0.0003 (10) −0.0084 (9) −0.0074 (10)

Geometric parameters (Å, °)

Cl1—C13 1.750 (2) C6—C7 1.508 (3)
O1—C1 1.212 (2) C6—H6A 0.97
O2—C9 1.222 (2) C6—H6B 0.97
N1—C9 1.353 (2) C7—C8 1.508 (3)
N1—C10 1.410 (2) C7—H7A 0.97
N1—H1N 0.86 C7—H7B 0.97
C1—C2 1.491 (3) C8—C9 1.495 (3)
C1—C5 1.497 (3) C8—H8A 0.97
C2—C3 1.517 (3) C8—H8B 0.97
C2—H2A 0.97 C10—C11 1.383 (2)
C2—H2B 0.97 C10—C15 1.386 (2)
C3—C4 1.522 (3) C11—C12 1.376 (3)
C3—H3A 0.97 C11—H11 0.93
C3—H3B 0.97 C12—C13 1.382 (3)
C4—C5 1.481 (3) C12—H12 0.93
C4—H4A 0.97 C13—C14 1.374 (3)
C4—H4B 0.97 C14—C15 1.382 (3)
C5—C6 1.496 (3) C14—H14 0.93
C5—H5 0.98 C15—H15 0.93
C9—N1—C10 130.17 (15) H6A—C6—H6B 107.7
C9—N1—H1N 114.9 C8—C7—C6 113.75 (16)
C10—N1—H1N 114.9 C8—C7—H7A 108.8
O1—C1—C2 123.9 (2) C6—C7—H7A 108.8
O1—C1—C5 126.11 (19) C8—C7—H7B 108.8
C2—C1—C5 110.00 (17) C6—C7—H7B 108.8
C1—C2—C3 104.75 (17) H7A—C7—H7B 107.7
C1—C2—H2A 110.8 C9—C8—C7 114.38 (16)
C3—C2—H2A 110.8 C9—C8—H8A 108.7
C1—C2—H2B 110.8 C7—C8—H8A 108.7
C3—C2—H2B 110.8 C9—C8—H8B 108.7
H2A—C2—H2B 108.9 C7—C8—H8B 108.7
C2—C3—C4 104.48 (17) H8A—C8—H8B 107.6
C2—C3—H3A 110.9 O2—C9—N1 122.76 (18)
C4—C3—H3A 110.9 O2—C9—C8 122.95 (18)
C2—C3—H3B 110.9 N1—C9—C8 114.29 (16)
C4—C3—H3B 110.9 C11—C10—C15 119.36 (18)
H3A—C3—H3B 108.9 C11—C10—N1 117.04 (16)
C5—C4—C3 105.72 (18) C15—C10—N1 123.60 (16)
C5—C4—H4A 110.6 C12—C11—C10 121.07 (18)
C3—C4—H4A 110.6 C12—C11—H11 119.5
C5—C4—H4B 110.6 C10—C11—H11 119.5
C3—C4—H4B 110.6 C11—C12—C13 119.37 (18)
H4A—C4—H4B 108.7 C11—C12—H12 120.3
C4—C5—C6 120.96 (19) C13—C12—H12 120.3
C4—C5—C1 104.34 (17) C14—C13—C12 119.93 (18)
C6—C5—C1 115.15 (17) C14—C13—Cl1 120.45 (15)
C4—C5—H5 105.0 C12—C13—Cl1 119.61 (15)
C6—C5—H5 105.0 C13—C14—C15 120.91 (18)
C1—C5—H5 105.0 C13—C14—H14 119.5
C5—C6—C7 113.96 (16) C15—C14—H14 119.5
C5—C6—H6A 108.8 C14—C15—C10 119.36 (17)
C7—C6—H6A 108.8 C14—C15—H15 120.3
C5—C6—H6B 108.8 C10—C15—H15 120.3
C7—C6—H6B 108.8
O1—C1—C2—C3 −172.7 (2) C10—N1—C9—C8 −179.45 (18)
C5—C1—C2—C3 5.5 (3) C7—C8—C9—O2 19.1 (3)
C1—C2—C3—C4 −23.3 (3) C7—C8—C9—N1 −161.51 (18)
C2—C3—C4—C5 33.3 (3) C9—N1—C10—C11 −178.43 (19)
C3—C4—C5—C6 −161.1 (2) C9—N1—C10—C15 2.0 (3)
C3—C4—C5—C1 −29.4 (2) C15—C10—C11—C12 −0.5 (3)
O1—C1—C5—C4 −166.9 (2) N1—C10—C11—C12 179.91 (18)
C2—C1—C5—C4 14.9 (3) C10—C11—C12—C13 −0.3 (3)
O1—C1—C5—C6 −32.0 (3) C11—C12—C13—C14 0.5 (3)
C2—C1—C5—C6 149.9 (2) C11—C12—C13—Cl1 179.36 (16)
C4—C5—C6—C7 −49.6 (3) C12—C13—C14—C15 0.1 (3)
C1—C5—C6—C7 −176.49 (18) Cl1—C13—C14—C15 −178.77 (15)
C5—C6—C7—C8 −175.97 (19) C13—C14—C15—C10 −0.9 (3)
C6—C7—C8—C9 179.88 (18) C11—C10—C15—C14 1.0 (3)
C10—N1—C9—O2 0.0 (3) N1—C10—C15—C14 −179.37 (18)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1N···O1i 0.86 2.17 2.980 (2) 158
C15—H15···O2 0.93 2.29 2.889 (2) 121

Symmetry codes: (i) −x, −y+2, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI2743).

References

  1. Bruker (2001). SMART, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Drège, E., Tominiaux, C., Morgant, G. & Desmaële, D. (2006). Eur. J. Org. Chem. pp. 4825–4840.
  3. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808042505/ci2743sup1.cif

e-65-0o162-sup1.cif (18KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808042505/ci2743Isup2.hkl

e-65-0o162-Isup2.hkl (160.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES